[1]马新灵,王 聪,石文琪,等.ORC系统的蒸发器夹点温差的数值分析和实验研究[J].郑州大学学报(工学版),2023,44(01):65-69.[doi:10.13705/j.issn.1671-6833.2023.01.006]
 MA Xinling,WANG Cong,SHI Wenqi,et al.Numerical Analysis and Experimental Investigation of the Evaporator PPTD in ORC System[J].Journal of Zhengzhou University (Engineering Science),2023,44(01):65-69.[doi:10.13705/j.issn.1671-6833.2023.01.006]
点击复制

ORC系统的蒸发器夹点温差的数值分析和实验研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年01期
页码:
65-69
栏目:
出版日期:
2022-12-06

文章信息/Info

Title:
Numerical Analysis and Experimental Investigation of the Evaporator PPTD in ORC System
作者:
马新灵 王 聪 石文琪 孟祥睿 张景迪 邱宇恒 潘佳浩
郑州大学机械与动力工程学院,河南郑州 450001

Author(s):
MA Xinling WANG Cong SHI Wenqi MENG Xiangrui ZHANG Jingdi QIU Yuheng PAN Jiahao
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
evaporator pinch point temperature difference experimental investigation comprehensive performance organic Rankine cycle
分类号:
TK115
DOI:
10.13705/j.issn.1671-6833.2023.01.006
文献标志码:
A
摘要:
有机朗肯循环( ORC) 是一种高效回收余热的可靠手段。考虑蒸发器的换热面积和系统的热力性能,自定义了性能评价指标F(·) ,在热源温度为105 ~ 165 ℃ 、蒸发器夹点温差为3 ~ 30 ℃ 时,分别从工质流量和蒸发温度的角度,模拟分析了夹点温差对系统性能的影响。结果表明:系统的净输出功和热效率均随夹点温差的降低而增加,且分别在热源温度为165 ℃ 、夹点温差为3 ℃ 时达到最大值53. 53 kW 和12. 21%;一定工质流量下,热源温度为165 ℃ 时,F(·) 的值最小,此时最优夹点温差为15 ℃ ;一定蒸发温度下,F(·) 的值随夹点温差的增大一直减小。在自主搭建的小型ORC 低温余热发电试验平台上, 分别研究了不同的热源流量、冷却水流量和工质流量下,蒸发器夹点温差对ORC 系统性能的影响。结果发现: 当热源流量为4 m3 / h,系统在较低的蒸发器夹点温差下有更好的表现,此时存在使系统性能最佳的工质流量和冷却水流量,分别为700 kg / h 和3 m3 / h。
Abstract:
Organic Rankine Cycle (ORC), a reliable way in recovering waste heat efficiently was examined in this study. Firstly, considering the heat exchange area of the evaporator and the thermodynamic performance of the system, the performance evaluation index F(·) was defined. When the heat source temperature was 105-165 ℃ and the evaporator pinch point temperature difference(PPTD) was 3-30 ℃, the influence of the evaporator PPTD on the system performance was simulated and analyzed from the aspects of working fluid flow rate and evaporation temperature, respectively. The results showed that the net output work and thermal efficiency of the system increased with the decrease of PPTD, and respectively reached the maximum value of 53.53 kW and 12.21% when the heat source temperature was 165 ℃ and the PPTD was 3 ℃. At a certain working fluid flow rate and the heat source temperature was 165 ℃, the F(·) was the minimum, where the optimal PPTD was 15 ℃. At a certain evaporation temperature, the F(·) decreased with the increase of PPTD. Then, on the self-built small-scale ORC low-temperature waste heat power generation test platform, the influence of the evaporator PPTD on the performance of ORC system at different heat source flow rate, cooling water flow rate and working fluid flow rate was studied. It is found that when the heat source flow rate was 4 m3/h, the system performed better with a lower PPTD, meanwhile the working fluid flow rate of 700 kg/h and cooling water flow rate of 3 m3/h made the system performance the best.

参考文献/References:

[1] 马新灵, 连麒飞, 雷萌, 等. 混合工质的选择对 ORC 系统性能的影响[ J] . 郑州大学学报(工学版) , 2021, 42(6) : 61-67. 

MA X L, LIAN Q F, LEI M, et al. Impacts of selection of zeotropic mixture on performance of ORC system[ J] . Journal of Zhengzhou university ( engineering science) , 2021, 42(6) : 61-67. 
[2] 魏新利, 李明辉, 马新灵, 等. 有机朗肯循环系统的 实验研究和性能分析[ J] . 郑州大学学报( 工学版) , 2016, 37(2) : 73-76. 
WEI X L, LI M H, MA X L, et al. Experimental investigation and performance analysis of organic Rankine cycle system[ J] . Journal of Zhengzhou university ( engineering science) , 2016, 37(2) : 73-76. 
[3] LI Y R, WANG J N, DU M T. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle [ J ] . Energy, 2012, 42(1) : 503-509. 
[4] SARKAR J. Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery[ J] . Energy, 2018, 143: 141-150. 
[5] LI J, YANG Z, HU S Z, et al. Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids[ J] . Energy, 2020, 206: 118217.
[6] ZHANG J N, QIN K, LI D J, et al. Potential of organic Rankine cycles for unmanned underwater vehicles [ J ] . Energy, 2020, 192: 116559. 
[7] SUN Z, LIU C, XU X X, et al. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle [ J ] . Applied thermal engineering, 2019, 158: 113769. 
[8] MAGO P J, LUCK R. Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles [ J ] . International journal of energy research, 2013, 37(8) : 888-898. 
[9] 魏新利, 潘惠华, 刘宏. 换热网络优化设计进展[ J] . 郑州工业大学学报, 1998, 19(增刊 1) : 77-82. 
WEI X L, PAN H H, LIU H. Development of optimal design for heat exchanger network[ J] . Journal of Zhengzhou university of technology, 1998, 19( S1) : 77-82. 
[10] XIA X X, WANG Z Q, HU Y H, et al. A novel comprehensive evaluation methodology of organic Rankine cycle for parameters design and working fluid selection [ J ] . Applied thermal engineering, 2018, 143: 283-292. 
[11] WANG J F, YAN Z Q, WANG M, et al. Multi-objective optimization of an organic Rankine cycle ( ORC) for low grade waste heat recovery using evolutionary algorithm [ J ] . Energy conversion and management, 2013, 71: 146-158. 
12] JANKOWSKI M, BORSUKIEWICZ A, SZOPIK-DEPCZYN ’ SKA K, et al. Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach [ J ] . Journal of cleaner production, 2019, 217: 798-807. 
[13] WANG J S, DIAO M Z, YUE K H. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method [ J ] . Energy, 2017, 141: 97-107. 
[14] 唐焕文. 实用数学规划导论[ M] . 大连: 大连工学院 出版社, 1986. 
TANG H W. Introduction to applied mathematical programming [ M] . Dalian: Dalian Institute of Technology Press, 1986.

更新日期/Last Update: 2022-12-07