[1]张端金,刘孟凯,杜 峥.量化误差下具有多丢包的信息物理系统H∞滤波[J].郑州大学学报(工学版),2023,44(03):30-36.[doi:10.13705/j.issn.1671-6833.2023.03.001]
 ZHANG Duanjin,LIU Mengkai,DU Zheng.H∞ Filtering for Cyber Physical Systems with Random Multiple Packet Loss with Quantization Error[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):30-36.[doi:10.13705/j.issn.1671-6833.2023.03.001]
点击复制

量化误差下具有多丢包的信息物理系统H∞滤波()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
30-36
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
H Filtering for Cyber Physical Systems with Random Multiple Packet Loss with Quantization Error
作者:
张端金刘孟凯杜 峥
郑州大学 电气与信息工程学院,河南 郑州 450001

Author(s):
ZHANG DuanjinLIU MengkaiDU Zheng
School of Electrical and Information Engineering, Zhengzhou University, 450001, Zhengzhou, Henan

关键词:
信息物理系统 量化误差 连续随机多丢包 H∞ 滤波 Delta 算子
Keywords:
cyber physical systems quantization error continuous random packet loss H filtering Delta operator
分类号:
TP273
DOI:
10.13705/j.issn.1671-6833.2023.03.001
文献标志码:
A
摘要:
研究一类具有信息传输不完全的信息物理系统 H∞ 滤波问题,考虑的信息传输不完全现象主要包括通信设 备缺陷引起的量化误差和网络固有因素造成的连续随机多数据包丢失。采用 Delta 算子离散化方法构建信息物理 系统状态空间模型和 H∞ 滤波器模型,通过分析和建模将量化误差和丢包模型与滤波器模型结合得出滤波误差系 统。利用 Lyapunov 稳定性理论和 Schur 补引理推导出保证系统渐近稳定和 H∞ 性能的 2 个定理。基于目标追踪系 统进行滤波器的仿真验证,结果表明: 当量化器的参数固定时,随着最大丢包数的增加,H∞ 性能指标 γ 逐渐增大, 即数据包丢失越严重对系统稳定性造成的影响越大,但所设计的滤波器仍满足稳定性条件。所提滤波方法是有效的。
Abstract:
The H filtering for cyber physical systems with incomplete information transmission was studied. This phenomenon mainly included quantization error caused by communication equipment defects and continuous random multiple packet loss caused by inherent network factors. The state space model of cyber physical systems and H filter model were constructed by using Delta operator discretization method. Through analysis and modeling, the filter error system was obtained by combining quantization error and packet loss model with filter model. Then, by using Lyapunov stability theory and Schur complement lemma, two theorems guaranteeing asymptotic stability and H performance were deduced. The filter was verified by simulation based on target tracking system. Assuming that the parameters of quantizer were fixed,with the increase of the maximum number of packet loss,the H performance index γ increased gradually. Which indicate that the more serious the packet loss,the greater the impact on the stability of the system,but the designed filter still could meet the stability condition. Simulation results showed that the proposed filtering method was effective.

参考文献/References:

[1] OLOWONONI F O, RAWAT D B, LIU C M. Resilient machine learning for networked cyber physical systems: a survey for machine learning security to securing machine learning for CPS[J]. IEEE Communications Surveys &Tutorials, 2021, 23(1): 524-552.

[2] BANDYSZAK T, DAUN M, TENBERGEN B, et al. Orthogonal uncertainty modeling in the engineering of cyber-physical systems[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1250-1265.
[3] HAN D. Constrained remote state estimation: a stochastic scheduling approach[D]. Hong Kong:Hong Kong University of Science and Technology,2015.[4] BAIDOO E, HU J R, ZHAN L. Kalman filtering method for sparse off-grid angle estimation for bistatic multiple-input multiple-output radar[J]. IET Radar, Sonar &Navigation, 2020, 14(2): 313-319.
[5] LIU M J, ZHANG D J. H2/H∞ filtering for delta operator networked systems with multi-channel delay, packet dropout and sequence disorder[C]∥2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway: IEEE, 2020: 4460-4465.
[6] SUN S L, XIAO W D. Optimal linear estimators for systems with multiple random measurement delays and pa-cket dropouts[J]. International Journal of Systems Science, 2013, 44(2): 358-370.
[7] MIDDLETON R, GOODWIN G. Improved finite word length characteristics in digital control using delta operators[J]. IEEE Transactions on Automatic Control, 1986, 31(11): 1015-1021.
[8] GOODWIN G C, LEAL R L, MAYNE D Q, et al. Rapprochement between continuous and discrete model ref-erence adaptive control[J]. Automatica, 1986, 22(2): 199-207.
[9] FU M Y, XIE L H. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711.
[10] YANG H J. Analysis and synthesis of delta operator systems[M]. Berlin: Springer, 2012.
[11] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002.YU L. Robust control: linear matrix inequality method[M]. Beijing: Tsinghua University Press, 2002.
[12] 张端金, 王钟堃. 具有丢包的未知转移概率Markov跳变系统鲁棒H∞滤波[J]. 郑州大学学报(工学版), 2021, 42(6): 1-6, 41.ZHANG D J, WANG Z K. Robust H∞ filtering for Mar-kov jump systems with unknown transition probabilities and packet dropouts[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(6): 1-6, 41.

更新日期/Last Update: 2023-05-08