[1]李 铭,苟浩瑞,于永洁,等.金属管道腐蚀在线监测信号漂移的修正方法[J].郑州大学学报(工学版),2023,44(03):90-95.[doi:10.13705/j.issn.1671-6833.2023.03.007]
 LI Ming,GOU Haorui,YU Yongjie,et al.Correction Method for Online Monitoring of Signal Drift in Metal Pipe Corrosion[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):90-95.[doi:10.13705/j.issn.1671-6833.2023.03.007]
点击复制

金属管道腐蚀在线监测信号漂移的修正方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
90-95
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Correction Method for Online Monitoring of Signal Drift in Metal Pipe Corrosion
作者:
李 铭 苟浩瑞 于永洁 周俊岑 甘芳吉
四川大学 机械工程学院,四川 成都 610065

Author(s):
LI Ming GOU Haorui YU Yongjie ZHOU Juncen GAN Fangji
School of Mechanical Engineering, Sichuan University, Sichuan Chengdu 610065

关键词:
FSM 在线腐蚀监测技术 数据修正 金属管道 EMAT
Keywords:
FSMonline corrosion monitoring technology data correction metallic conduit EMAT
分类号:
TH89
DOI:
10.13705/j.issn.1671-6833.2023.03.007
文献标志码:
A
摘要:
针对石化行业中金属管道腐蚀的在线监测数据可靠性不高的问题,提出一种融合了场指纹技术( FSM) 及 电磁超声技术( EMAT) 的检测方法。通过对 FSM 技术测量原理的理论分析,确定测量过程中数据误差的来源也就 是失调电压的表达式,将 FSM 的测量结果与 EMAT 测量结果对比,将某一时刻 EMAT 的测量数据作为 FSM 数据 的真值,得到修正后的探针电压值,从而修正了长期测量过程中因零点失调电压和数据处理单元放大倍数变化 引起的测量数据漂移问题,实现对管道大范围、长期稳定的在线监测。实验结果表明: 经过为期 2 a 的现场实际 应用,所提出的数据修正方法将 FSM 测量数据的最大误差由修正前的 10. 09%减小到 0. 49%,最大误差减小了 9. 6 百分点。
Abstract:
A detection method that could integrat field signature method (FSM) and electromagnetic ultrasonic transducer (EMAT) was proposed,aiming at the problem that the online monitoring data of metal pipe corrosion in the petrochemical industry was not reliable. Through the theoretical analysis of the measurement principle of FSM technology, the source of data error in the measurement process was identified, that was, the expression of offset voltage. The measurement results of FSM were compared with the measurement results of EMAT, and the measurement data of EMAT at a certain moment was taken as the true value of FSM data to obtain the corrected probe voltage value. Thus, the problem of data drift caused by zero offset voltage and data processing unit magnification change during long-term measurement was corrected, and the large-scale and long-term stable online monitoring of pipeline was realized. The experimental results showed that after two years of practical application, the proposed method could reduce the maximum error of FSM measurement data from 10.09% to 0.49%, and the maximum error was reduced by 9.6 percentage points.

参考文献/References:

[1] KAWAKAM Y, KANAJI H, OKU K. Study on application of field signature method (FSM) to fatigue crack monitoring on steel bridges[J]. Procedia Engineering, 2011, 14: 1059-1064.

[2] 王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测试方法的研究[J]. 郑州大学学报(工学版), 2020, 41(2): 13-18.WANG Z, LIU C L, LUO Q H. Research on ultrasonic sensors characteristics and testing method[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(2): 13-18.
[3] 万正军, 廖俊必, 王裕康, 等. 基于电位列阵的金属管道坑蚀监测研究[J]. 仪器仪表学报, 2011, 32(1): 19-25.WAN Z J, LIAO J B, WANG Y K, et al. Research on metal tubing pit corrosion monitoring based on potential-array method[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 19-25.
[4] 甘芳吉, 余敏, 徐涛, 等. 基于多频交流场指纹法的金属管道腐蚀监测研究[J]. 工程科学与技术, 2018, 50(4): 246-250.GAN F J, YU M, XU T, et al. Metal pipe corrosion on-line monitoring technique based on multi-frequency alternative current field signature method[J]. Advanced Engineering Sciences, 2018, 50(4): 246-250.
[5] 甘芳吉, 万正军, 罗航, 等. 基于场指纹法的金属管道小腐蚀坑的监测方法[J]. 仪器仪表学报, 2013, 34(9): 2087-2094.GAN F J, WAN Z J, LUO H, et al. Monitoring method for small corrosion pits of metal pipeline based on field signature method[J]. Chinese Journal of Scientific Instrument, 2013, 34(9): 2087-2094.
[6] LI G L, ZHANG Z Q, WANG H D, et al. Acoustic emission monitoring and failure mechanism analysis of rolling contact fatigue for Fe-based alloy coating[J]. Tribology International, 2013, 61: 129-137.
[7] 高飞. 高温管道超声波腐蚀监测技术的研究[D]. 沈阳: 沈阳工业大学, 2014.GAO F. Research of high temperature pipe ultrasonic corrosion monitoring technology[D]. Shenyang: Shenyang University of Technology, 2014.
[8] 张荣海, 廖俊必, 徐涛. 具有校正功能的超声波管道腐蚀监测系统[J]. 电子设计工程, 2016, 24(17): 119-121, 124.ZHANG R H, LIAO J B, XU T. Ultrasonic pipeline corrosion monitoring system with function of calibration and compensation[J]. Electronic Design Engineering, 2016, 24(17): 119-121, 124.
[9] LI W Y, ZHAO S P, GAN F J. Characterisation of backwall crack depth using the pulsed potential drop method[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2020, 62(9): 555-558.
[10] CAWLEY P, CEGLA F, STONE M. Corrosion monitoring strategies-choice between area and point measurements[J]. Journal of Nondestructive Evaluation, 2013, 32(2): 156-163.
[11] AI Q, LIU C X, CHEN X R, et al. Acoustic emission of fatigue crack in pressure pipe under cyclic pressure[J]. Nuclear Engineering and Design, 2010, 240(10): 3616-3620.
[12] 朱培珂, 邓金根, 黄凯文, 等. 油气田现场腐蚀检测装置设计与应用[J]. 科技导报, 2014, 32(19): 68-72.ZHU P K, DENG J G, HUANG K W, et al. Design and application of on-line detecting device for corrosion in oil &gas field[J]. Science &Technology Review, 2014, 32(19): 68-72.
[13] ALAMIN M, TIAN G Y, ANDREWS A, et al. Principal component analysis of pulsed eddy current response from corrosion in mild steel[J]. IEEE Sensors Journal, 2012, 12(8): 2548-2553.
[14] SPOSITO G, CAWLEY P, NAGY P B. Potential drop mapping for the monitoring of corrosion or erosion[J]. NDT &E International, 2010, 43(5): 394-402.
[15] GAN F J, WAN Z J, LI Y T, et al. Improved formula for localized corrosion using field signature method[J]. Measurement, 2015, 63: 137-142.
[16] GAN F J, TIAN G Y, WAN Z J, et al. Investigation of pitting corrosion monitoring using field signature method[J]. Measurement, 2016, 82: 46-54.
[17] TOHMYOH H, IKARASHI H, MATSUI Y, et al. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique[J]. Measurement Science and Technology, 2015, 26(8): 085602.
[18] 罗建, 甘芳吉, 张轶茗, 等. 管道的在线监测型自校正超声波测厚技术[J]. 无损检测, 2017, 39(11): 48-52, 78.LUO J, GAN F J, ZHANG Y M, et al. Ultrasonic thickness on-line monitoring technique with self-calibration of pipeline[J]. Nondestructive Testing Technologying, 2017, 39(11): 48-52, 78.
[19] STORGwidth=11,height=11,dpi=110RDS E, SIMONSSON K. Crack length evaluation for cyclic and sustained loading at high temperature using potential drop[J]. Experimental Mechanics, 2015, 55(3): 559-568.

更新日期/Last Update: 2023-05-09