[1]孟祥睿,赵一洁,马新灵,等.基于电热效应的带状制冷结构的模拟研究[J].郑州大学学报(工学版),2023,44(02):98-103.[doi:10.13705/j.issn.1671-6833.2022.05.019]
 MENG Xiangrui,ZHAO Yijie,MA Xinling,et al.Simulation Study of Belt Refrigeration Structure Based on Electrocaloric Effect[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):98-103.[doi:10.13705/j.issn.1671-6833.2022.05.019]
点击复制

基于电热效应的带状制冷结构的模拟研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年02期
页码:
98-103
栏目:
出版日期:
2023-02-27

文章信息/Info

Title:
Simulation Study of Belt Refrigeration Structure Based on Electrocaloric Effect
作者:
孟祥睿 赵一洁 马新灵 龚彭真 汪守刚
郑州大学 机械与动力工程学院,河南 郑州 450001

Author(s):
MENG Xiangrui ZHAO Yijie MA Xinling GONG Pengzhen WANG Shougang
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
固体制冷 电热效应 数值模拟 制冷功率密度(CPD) P(VDF-TrFE-CFE)三元聚合物
Keywords:
solid-state refrigeration electrocaloric effect numerical simulation cooling power density(CPD) P(VDF-TrFE-CFE) terpolymer
分类号:
O241;TB66
DOI:
10.13705/j.issn.1671-6833.2022.05.019
文献标志码:
A
摘要:
提出了一种基于电热效应的带状电热模块的模块化固体制冷装置。 在该装置中,由电热材料 P ( VDF-Tr�2FE-CFE)三元聚合物制成带状电热模块,在驱动轮带动下依次通过电极、热端蓄热器、冷端蓄热器实现电热效应的 4 个阶段,实现连续供冷。 利用数值模拟对该结构的一个制冷单元进行了研究,研究了电热模块的极化时间、长度、 运动速度、温度跨度以及所施加的电场强度的影响。 研究结果表明:电热模块的极化时间对获得稳定的制冷功率 密度(CPD)至关重要。 CPD 随着电热模块长度的增大而增大,随着其运动速度的增大而增大,随着两端温度跨度 的增加而减小,并且与电场强度表现出很强的正相关性。 另外,不同电场强度下存在最佳的 COP / COPc 值。 在温 度跨度为 3 K、电场强度为 160 MV / m 的情况下,该制冷单元的 CPD 达到了 6. 61 W / cm 2 。
Abstract:
Based on the electrocaloric effect, a novelty refrigeration device with a ribbon electrocaloric module made of electrocaloric material P(VDF-TrFE-CFE) ternary polymer was proposed. In the device, the ribbon electrocaloric module was driven by a driving wheel and moved sequentially pass through electrodes, hot end, and cold end. In this way, the EC module would undergo four stages of electrocaloric effect. Continuous cooling could be achieved at the cold end. A numerical simulation study of a cooling unit of the structure was carried out, and the effects of the polarization time, length, movement speed, temperature span and applied electric field strength of the electrocaloric module on the cooling performance were investigated. The results showed that the polarization time of the electrocaloric module was essential to obtain a stable cooling power density(CPD). The CPD increased with the increase of the length of the electrocaloric module and its motion speed, decreased with the increase of the temperature span at both ends. It also showed a strong positive correlation with the electric field strength. The optimal COP/COPc values existed for different electric field strengths. The cooling power density of a cooling unit reached 6.61 W/cm at a temperature span of 3 K and an electric field strength of 160 MV/m.

参考文献/References:

[1] 魏新利,王中华,耿利红,等. 压缩制冷系统节流损失 及应对方案研究[ J] . 郑州大学学报( 工学版) ,2015, 36(3) :68-72. 

WEI X L, WANG Z H, GENG L H, et al. Study on the throttling losses in CRS and solutions [ J ] . Journal of Zhengzhou University ( Engineering Science ) , 2015, 36 (3) :68-72. 
[2] SUN Z M, WANG Q M, SLAUGHTER W S. A solidstate refrigeration based on electrocaloric effect: device and its analytical model[ J] . Journal of Applied Physics, 2018, 124(6) : 064503. 
[3] GUO D Z, GAO J S, YU Y J, et al. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system [ J ] . International Journal of Heat And Mass Transfer, 2014, 72: 559-564. 
[4] MA R J, ZHANG Z Y, TONG K, et al. Highly efficient electrocaloric cooling with electrostatic actuation[ J] . Science, 2017, 357(6356) : 1130-1134. 
[5] WANG Y D, ZHANG Z Y, USUI T, et al. A high-performance solid-state electrocaloric cooling system [ J ] . Science, 2020, 370(6512) : 129-133. 
[6] 李海波, 姜倩, 徐小农, 等. 基于热开关的铁电制冷新结 构及数值模拟[J]. 低温工程, 2016(5): 51-56. 
LI H B, JIANG Q, XU X N, et al. A new structure of electrocaloric effect refrigeration based on thermal switch and numerical calculation [ J ] . Cryogenics, 2016 (5) : 51-56.
 [7] GU H M, CRAVEN B, QIAN X S, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density [ J ] . Applied Physics Letters, 2013, 102 (11) : 112901.
 [8] HOLMAN J P. Heat transfer, tenth edition [ M ] . New York: McGraw-Hill Companies, Inc. , 2010. 
[9] GUO D Z, GAO J S, MCGAUGHEY A J H, et al. Design and evaluation of a MEMS-based stirling microcooler[ J]. Journal of Heat Transfer, 2013, 135(11): 111003. 
[10] LI X Y, QIAN X S, LU S G, et al. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly ( vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer[ J] . Applied Physics Letters, 2011, 99 (5) : 052907.
 [11] SHI J Y, LI Q, GAO T Y, et al. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system [ J] . International Journal of Refrigeration, 2021, 121: 279-288.
 [12] APREA C, GRECO A, MAIORINO A, et al. A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model[ J]. International Journal of Refrigeration, 2016, 69: 369-382.
 [13] CHEN Q, CHU B J, ZHOU X, et al. Effect of metal-polymer interface on the breakdown electric field of poly( vinylidene fluoride-trifluoroethylene-chlorofluoroethylene ) terpolymer [ J ] . Applied Physics Letters, 2007, 91 (6) : 062907

更新日期/Last Update: 2023-02-27