[1]韩刚涛,马瑞鹏,吴 迪.基于时频图切割的宽带信号智能检测与识别[J].郑州大学学报(工学版),2023,44(03):44-51.[doi:10.13705/j.issn.1671-6833.2023.03.008]
 HAN Gangtao,MA uipeng,WU Di.Intelligent Detection and Identification of Broadband Signals Based on Time-frequency Map Cutting[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):44-51.[doi:10.13705/j.issn.1671-6833.2023.03.008]
点击复制

基于时频图切割的宽带信号智能检测与识别()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
44-51
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Intelligent Detection and Identification of Broadband Signals Based on Time-frequency Map Cutting
作者:
韩刚涛1马瑞鹏2吴 迪3
1.郑州大学 电气与信息工程学院,河南 郑州 450001; 2.郑州大学 网络空间安全学院,河南 郑州 450002; 3.中国人民解放军战略支援部队信息工程大学 数据与目标工程学院,河南 郑州 450001
Author(s):
HAN Gangtao1MA Ruipeng2WU Di3
1.School of Electrical and Information Engineering, Zhengzhou University, 450001, Zhengzhou, Henan, 2.School of Network Space Security, Zhengzhou University, 450002, Zhengzhou, Henan,3. School of Strategic Support for the Chinese People’s Liberation Army, School of Information Engineering Engineering Engineering, Henan Zhengzhou 450001

关键词:
信号检测 深度学习 大带宽 轻量型 Focal-EIOU
Keywords:
signal detection deep learning large bandwidth lightweight Focal-EIOU
分类号:
TN971. 1
DOI:
10.13705/j.issn.1671-6833.2023.03.008
文献标志码:
A
摘要:
针对大带宽场景中非合作通信信号的高效检测问题,结合机器学习技术提出一种基于时频图切割的宽带 信号智能检测与识别方法。该方法采用 Mobilenet 网络替代 YOLOv4 当中的 CSPdarknet53 网络进行特征提取,构建 了一种轻量型的 YOLOv4 模型。同时,模型引入 Focal-EIOU 代价函数和一种改进的加权盒融合算法( WBF) ,有效 提高了训练效率以及检测与识别精度。实验结果表明: 本文方法可以快速地检测出大带宽下通信采集数据中的连 续信号和突发信号,以及信号的出现时刻、频率范围、调制方式等相关参数,其性能优于传统的能量检测方法。与 其他同类方法相比,本文方法的平均检测精度( mAP) 均大于 81%,其中,采用 YOLOv4-MobilenetV1 模型的检测速度 达到 77. 60 帧/s,较好地兼顾了检测精度与实时性要求,更利于工程部署。
Abstract:
To address the problem of efficient detection of noncooperative communication signals in large bandwidth scenarios, an intelligent detection and identification method for broadband signals based on time-frequency map cutting was proposed in combination with machine learning techniques. In this study, the method adopted Mobilenet network instead of CSPdarknet53 network in YOLOv4 for feature extraction, and constructed a lightweight YOLOv4 model. At the same time, the model introduced the Focal-EIOU cost function and an improved weighted box fusion algorithm (WBF), which could effectively improve the training efficiency and the detection and recognition accuracy. The experimental results showed that the method in this study could quickly detect the continuous and burst signals in the communication acquisition data with large bandwidth, as well as the moment of appearance, frequency range, modulation mode and other related parameters, and its performance is better than the traditional energy detection methods. Compared with other similar methods, the average detection accuracy (mAP) of this study was greater than 81%, and the detection speed of YOLOv4-MobilenetV1 model reached 77.60 frames/s, which was better for both detection accuracy and real-time requirements and was more conducive to engineering deployment.

参考文献/References:

[1] 潘宝凤. 通信侦察系统总体设计技术[J]. 电讯技术, 2011, 51(6): 1-5.PAN B F. Overall design of communication reconnaissance system[J]. Telecommunication Engineering, 2011, 51(6): 1-5.

[2] DIAMANT R. Closed form analysis of the normalized matched filter with a test case for detection of underwater acoustic signals[J]. IEEE Access, 2016, 4: 8225-8235.
[3] GARDNER W A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36.
[4] ZENG Y H, LIANG Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1804-1815.
[5] NIKONOWICZ J, JESSA M. A novel method of blind signal detection using the distribution of the bin values of the power spectrum density and the moving average[J]. Digital Signal Processing, 2017, 66: 18-28.
[6] HUANG H, LI J Q, WANG J, et al. FCN-based carrier signal detection in broadband power spectrum[J]. IEEE Access, 2020, 8: 113042-113051.
[7] PRASAD K N R S V, DSOUZA K B, BHARGAVA V K, et al. A deep learning framework for blind time-frequency localization in wideband systems[C]∥2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Piscataway: IEEE, 2020: 1-6.
[8] ZHA X, PENG H, QIN X, et al. A deep learning framework for signal detection and modulation classification[J]. Sensors (Basel, Switzerland), 2019, 19(18): 4042.
[9] LI R D, HU J H, LI S Q, et al. Blind detection of communication signals based on improved YOLO3[C]∥6th International Conference on Intelligent Computing and Signal Processing (ICSP). Piscataway: IEEE, 2021: 424-429.
[10] 李润东. 基于深度学习的通信信号智能盲检测与识别技术研究[D]. 成都: 电子科技大学, 2021.LI R D. Research on intelligent blind detection and recognition of communication signals based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[11] 单倩文, 郑新波, 何小海, 等. 基于改进多尺度特征图的目标快速检测与识别算法[J]. 激光与光电子学进展, 2019, 56(2): 021002.SHAN Q W, ZHENG X B, HE X H, et al. Fast object detection and recognition algorithm based on improved multi-scale feature maps[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021002.
[12] 幸晨杰. 基于深度神经网络的宽带信号频谱检测方法及其后处理流程设计[J]. 电子质量, 2021(7): 126-131.XING C J. A wideband signal spectrum detection method based on deep neural network and its post-processing workflow[J]. Electronics Quality, 2021(7): 126-131.
[13] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2022-10-01].https:∥arxiv.org/pdf/1704.04861.pdf.
[14] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[15] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.[16] 薛均晓, 武雪程, 王世豪, 等. 基于改进YOLOv4的自然人群口罩佩戴检测方法[J]. 郑州大学学报(工学版), 2022, 43(4): 16-22.XUE J X, WU X C, WANG S H, et al. A method on mask wearing detection of natural population based on improved YOLOv4[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 16-22.
[17] SOLOVYEV R, WANG W M, GABRUSEVA T. Weighted boxes fusion: ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: 104117.
[18] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2021: 13024-13033.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].(2020-10-11)[2022-10-01]. https:∥arxiv.org/abs/2004.10934.

相似文献/References:

[1]郝旺身,陈耀,孙浩,等.基于全矢-CNN的轴承故障诊断研究[J].郑州大学学报(工学版),2020,41(05):92.[doi:10.13705/j.issn.1671-6833.2020.03.004]
 HAO Wangshen,CHEN Yao,SUN Hao,et al.Bearing Fault Diagnosis Based on Full Vector-CNN[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):92.[doi:10.13705/j.issn.1671-6833.2020.03.004]
[2]汪 烨,周思源,翁知远,等.一种面向用户反馈的智能分析与服务设计方法[J].郑州大学学报(工学版),2023,44(03):58.[doi:10.13705/j.issn.1671-6833.2022.06.004]
 Wang Ye,Zhou Siyuan,Weng Zhiyuan,et al.An Intelligent Analysis and Service Design Method for User Feedback[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):58.[doi:10.13705/j.issn.1671-6833.2022.06.004]
[3]张涛,葛育伟,韩旭,等.基于对抗机制的彩色图像隐写分析算法[J].郑州大学学报(工学版),2023,44(04):10.[doi:10.13705/j.issn.1671-6833.2023.04.013]
 ZHANG Tao,GE Yuwei,HAN Xu,et al.Color Image Steganalysis Algorithm Based on Adversarial Mechanisms[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):10.[doi:10.13705/j.issn.1671-6833.2023.04.013]
[4]魏明军,王镆涵,刘亚志,等.基于特征融合和混合注意力的小目标检测[J].郑州大学学报(工学版),2024,45(03):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]
 WEI Mingjun,WANG Mohan,LIU Yazhi,et al.Small Object Detection Based on Feature Fusion and Mixed Attention[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]

更新日期/Last Update: 2023-05-08