[1]刘华东,靳朝阳,王定标,等.旁路结构对亚临界喷射器引射效率的影响[J].郑州大学学报(工学版),2023,44(06):48-53.[doi:10.13705/j.issn.1671-6833.20223.02.008]
 LIU Huadong,JIN Zhaoyang,WANG Dingbiao,et al.Influence Analysis of the Bypass Structure on Entrainment Ratio of a Subcritical Ejector[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):48-53.[doi:10.13705/j.issn.1671-6833.20223.02.008]
点击复制

旁路结构对亚临界喷射器引射效率的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年06期
页码:
48-53
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Influence Analysis of the Bypass Structure on Entrainment Ratio of a Subcritical Ejector
作者:
刘华东 靳朝阳 王定标 郝 琪 党 毫 张羽翔
郑州大学 机械与动力工程学院,河南 郑州 450001
Author(s):
LIU Huadong JIN Zhaoyang WANG Dingbiao HAO Qi DANG Hao ZHANG Yuxiang
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
引射系数 进口角度 进口宽度 进口压力 旁路喷射器
Keywords:
entrainment ratio inlet angle inlet width inlet pressure bypass ejector
分类号:
TB65
DOI:
10.13705/j.issn.1671-6833.20223.02.008
文献标志码:
A
摘要:
针对传统喷射器引射率偏低的问题,通过设置旁路来改善其内部流场。 采用数值模拟方法研究了旁路进 口角度、宽度和介质压力对喷射器内流体压力、速度、流场以及引射效率的影响规律,探寻研究范围内的最佳参数 匹配,并与传统喷射器效率进行对比。 结果表明:喷射器结构尺寸、工作流体和引射流体工况固定时,引射系数随 旁路进口角度增加先增加后减小;引射系数随旁路进口角度、旁路进口宽度、旁路进口压力的增加先增加后减小, 存在最佳旁路进口宽度、进口角度和最优旁路进口压力使两相旁路喷射器引射系数最大。 在所研究范围内,最佳 旁路进口角度为 15°,进口宽度为 3 mm,最佳旁路进口压力为 618. 5 kPa;与传统喷射器相比,相同工况时,最佳结 构尺寸和旁路进口压力下的两相旁路喷射器引射系数提高了 25. 7% ~ 56. 8%。
Abstract:
Regarding to the low efficiency, a bypass structure was set to improve the internal fluid of a traditional ejector. Computational fluid dynamics was conducted to study the influence of the structure and the working parameters of the bypass on the flow field, including the bypass inlet angle, width and the flow pressure. The optimum matching parameters was also investigated. Based on the simulation results, when all other parameters of the ejector were fixed, the entrain ratio increased firstly and then decreased with the increase of the inlet angle, the width and the flow pressure of the bypass, respectively, and there existed the optimum parameters. In this investigation, the optimum inlet angle, width and the flow pressure of the bypass was 15°, 3 mm and 618. 5 kPa. Compared with the traditional ejector, the entrainment ratio of the bypass ejector could be increased by 25. 7% - 56. 8% in the same conditions.

参考文献/References:

[1] KEENAN J H, NEUMANN E P. A simple air ejector [ J] . Journal of Applied Mechanics, 1942, 9(2) : A75- A81.

 [2] MUNDAY J T, BAGSTER D F. A new ejector theory applied to steam jet refrigeration [ J ] . Industrial & Engineering Chemistry Process Design and Development, 1977, 16(4) : 442-449. 
[3] HUANG B J, CHANG J M, WANG C P, et al. A 1-D analysis of ejector performance [ J] . International Journal of Refrigeration, 1999, 22(5) : 354-364.
 [4] BARTA R B, DHILLON P, BRAUN J E, et al. Design and optimization strategy for ejectors applied in refrigeration cycles [ J ] . Applied Thermal Engineering, 2021, 189: 116682. 
[5] FU W N, LIU Z L, LI Y X, et al. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance [ J] . International Journal of Thermal Sciences, 2018, 132: 509-516.
 [6] DONG J M, HU Q Y, YU M Q, et al. Numerical investigation on the influence of mixing chamber length on steam ejector performance [ J ] . Applied Thermal Engineering, 2020, 174: 115204. 
[7] WU Y F, ZHAO H X, ZHANG C Q, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. 
[8] ZHU Y H, WANG Z C, YANG Y P, et al. Flow visualization of supersonic two - phase transcritical flow of CO2 in an ejector of a refrigeration system [ J] . International Journal of Refrigeration, 2017, 74: 354-361.
 [9] LITTLE A B, GARIMELLA S. Shadowgraph visualization of condensing R134a flow through ejectors [ J] . International Journal of Refrigeration, 2016, 68: 118-129. 
[10] 史海路, 刘华东, 魏新利, 等. 喷嘴距对喷射器及双 蒸发压缩 / 喷射制冷系统性能的影响研究[ J] . 高校 化学工程学报, 2019, 33(2) : 321-328. 
SHI H L, LIU H D, WEI X L, et al. Effects of nozzle exit position on the performance of ejector and bi-evaporator compression / ejection refrigeration system [ J ] . Journal of Chemical Engineering of Chinese Universities, 2019, 33(2) : 321-328.
 [11] SRIVEERAKUL T, APHORNRATANA S, CHUNNANOND K. Performance prediction of steam ejector using computational fluid dynamics: part 2, flow structure of a steam ejector influenced by operating pressures and geometries [ J ] . International Journal of Thermal Sciences, 2007, 46(8) : 823-833.
 [12] RUANGTRAKOON N, THONGTIP T, APHORNRATANA S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle [ J ] . International Journal of Thermal Sciences, 2013, 63: 133-145.
 [13] CHEN W X, CHEN H Q, SHI C Y, et al. A novel ejector with a bypass to enhance the performance [ J]. Applied Thermal Engineering, 2016, 93: 939-946. 
[14] CHEN W X, HUANG C X, CHONG D T, et al. Numerical assessment of ejector performance enhancement by means of combined adjustable-geometry and bypass methods [ J ] . Applied Thermal Engineering, 2019, 149: 950-959. 
[15] TANG Y Z, LIU Z L, LI Y X, et al. Performance improvement of steam ejectors under designed parameters with auxiliary entrainment and structure optimization for high energy efficiency[ J] . Energy Conversion and Management, 2017, 153: 12-21.
 [16] TANG Y Z, LIU Z L, SHI C, et al. A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system[ J] . Energy, 2018, 158: 305-316.
 [17] BODYS J, SMOLKA J, BANASIAK K, et al. Performance improvement of the R744 two-phase ejector with an implemented suction nozzle bypass [ J ] . International Journal of Refrigeration, 2018, 90: 216-228.
 [18] BODYS J, SMOLKA J, PALACZ M, et al. Experimental and numerical study on the R744 ejector with a suction nozzle bypass [ J] . Applied Thermal Engineering, 2021, 194: 117015.
 [19] 魏新利, 王中华, 耿利红, 等. 压缩制冷系统节流损 失及 应 对 方 案 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2015, 36(3) : 68-72. 
WEI X L, WANG Z H, GENG L H, et al. Study on the throttling losses in CRS and solutions [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2015, 36 (3) : 68-72.
 [20] 耿利红. 双蒸发压缩 / 喷射制冷系统及两相喷射器的 研究[D] . 郑州: 郑州大学, 2017. 
GENG L H. Study on bi-evaporator compression / ejection refrigeration system and two-phase ejector [ D] . Zhengzhou: Zhengzhou University, 2017. 
[21] 孔珑. 流体力学[M] . 北京: 高等教育出版社, 2003. KONG L. Hydromechanics[ M] . Beijing: Higher Education Press, 2003.
 [22] BARTOSIEWICZ Y, AIDOUN Z, MERCADIER Y. Numerical assessment of ejector operation for refrigeration applications based on CFD [ J] . Applied Thermal Engineering, 2006, 26(5 / 6) : 604-612.

更新日期/Last Update: 2023-10-22