[1]裴浩东,叶社保,杨 平,等.软土地层盾构掘进参数分析及掘进速度预测[J].郑州大学学报(工学版),2024,45(01):107-113.[doi:10.13705/j.issn.1671-6833.2023.04.003]
 PEI Haodong,YE Shebao,YANG Ping,et al.Analysis of Boring Parameters of Shield in Soft Soil Strata and Prediction of Driving Speed[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):107-113.[doi:10.13705/j.issn.1671-6833.2023.04.003]
点击复制

软土地层盾构掘进参数分析及掘进速度预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年01期
页码:
107-113
栏目:
出版日期:
2024-01-19

文章信息/Info

Title:
Analysis of Boring Parameters of Shield in Soft Soil Strata and Prediction of Driving Speed
作者:
裴浩东 叶社保 杨 平 吴永哲
1. 南京林业大学 土木工程学院,江苏 南京 210037;2. 中交隧道工程局有限公司,江苏 南京 210000
Author(s):
PEI Haodong 1 YE Shebao 2 YANG Ping 1 WU Yongzhe 2
1. School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; 
2. CCCC Tunnel Engineering Co., Ltd., Nanjing 210000, China
关键词:
土压平衡盾构 掘进参数 正态性检验 互信息 随机森林 遗传算法 BP 神经网络
Keywords:
earth pressure balance shield boring parameters normality test mutual information random forest genetic algorithm BP neural network
DOI:
10.13705/j.issn.1671-6833.2023.04.003
文献标志码:
A
摘要:
依托佛山地铁 3 号线逢沙站—创意园站区间隧道工程,通过现场实测数据,详细分析了土压平衡盾构穿越 软土地层时盾构掘进参数内在变化规律,并建立了掘进速度预测模型。 首先,对盾构掘进参数进行数理统计分析, 对各掘进参数的分布进行正态性检验;其次,进行 Pearson 相关性分析,找出线性相关性较强参数间变化规律;再 次,利用基于互信息的特征选择算法,筛选与掘进速度非线性相关性较高的参数变量;最后,分别建立随机森林回 归预测模型和基于遗传算法优化 BP 神经网络预测模型,对掘进速度进行预测。 研究结果表明:在软弱地层盾构隧 道工程中,通常采用较低的刀盘转速、刀盘扭矩及较高的掘进速度、贯入度、盾构总推力、土仓压力;掘进速度等参 数均通过了采用 K-S 检验法的正态性检验;掘进速度与贯入度存在极强相关性关系;基于遗传算法优化 BP 神经网 络预测模型的预测精度略优于随机森林回归预测模型,随机森林回归预测模型在测试集中的平均绝对误差、均方 根误差、 拟 合 优 度 分 别 为 4. 055、 5. 038、 0. 871, 而 基 于 遗 传 算 法 优 化 BP 神 经 网 络 预 测 模 型 分 别 为 0. 822、 1. 244、0. 991。
Abstract:
Taking the tunnel project from Fengsha Station to Creative Park Station of Foshan Metro Line 3 as background, the inherent variation tendency of boring parameters of shield when the EPB shield tunnel crossed the soft soil strata was analyzed in detail through the on-site measured data, and the different prediction models of driving speed were built. Firstly, the shield tunneling parameters were analyzed by mathematical statistics, and the distribution of each tunneling parameter was tested. Secondly, the Pearson correlation analysis was performed to find out the variation law between the parameters with strong linear correlation. Then using the feature selection algorithm based on mutual information, the parameter variables with high nonlinear correlation with the driving speed were screened. Finally, the random forest regression prediction and the BP neural network prediction model based on genetic algorithm optimization were established respectively to predict the driving speed. The research results showed that in shield tunnel projects in soft formations, lower cutterhead speed, cutterhead torque, higher tunneling speed, penetration, total shield thrust and soil silo pressure were usually used. The parameters such as the excavation speed passed the normality test using the K-S test method. There was a strong correlation between the speed of excavation and the degree of penetration. The average absolute error, root mean square error and goodness of fit of the random forest regression prediction model in the test set were 4. 055, 5. 038 and 0. 871, respectively, while the optimization of the BP neural network prediction model based on genetic algorithm was 0. 822, 1. 244 and 0. 991, respectively

参考文献/References:

[1] 司翔宇,杨平,邵光辉,等. 隧道盾构施工参数对地表沉降影响的实测研究[J]. 湖南大学学报(自然科学版), 2008, 35(11): 167-170.SI X Y,YANG P,SHAO G H, et al. Site monitoring research on ground surface subsidence of tunnel induced by shield construction parameters[J]. Journal of Hunan University(Natural Sciences), 2008, 35(11): 167-170.

[2] 孙捷城, 王国富, 路林海, 等. 厚冲积地层盾构掘进参数设定及地表变形规律研究[J]. 防灾减灾工程学报, 2018, 38(3): 487-497.SUN J C, WANG G F, LU L H, et al. Study on parameters setting of EPB shield driving and laws of surface deformation in thick alluvial clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 487-497.
[3] 杨果林, 张沛然, 陈亚军, 等. 长沙典型地层土压平衡盾构掘进参数及表现预测[J]. 中南大学学报(自然科学版), 2020, 51(8): 2069-2080.YANG G L, ZHANG P R, CHEN Y J, et al. Excavation parameters and performance prediction of earth pressure balance shield in typical strata of Changsha[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2069-2080.
[4] 周振梁, 谭忠盛, 李宗林, 等. 一种基于数据挖掘的掘进速度预测模型[J]. 应用基础与工程科学学报, 2021, 29(5): 1201-1219.ZHOU Z L, TAN Z S, LI Z L, et al. A data mining based prediction model for penetration rate[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1201-1219.
[5] 宋克志, 袁大军, 王梦恕. 基于盾构掘进参数分析的隧道围岩模糊判别[J]. 土木工程学报, 2009, 42(1): 107-113.SONG K Z, YUAN D J, WANG M S. Fuzzy identification of surrounding rock conditions based on analysis of shield tunneling data[J]. China Civil Engineering Journal, 2009, 42(1): 107-113.
[6] 朱合华, 徐前卫, 廖少明, 等. 土压平衡盾构法施工参数的模型试验研究[J]. 岩土工程学报, 2006, 28(5): 553-557.ZHU H H, XU Q W, LIAO S M, et al. Experimental study on working parameters of EPB shield machine[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 553-557.
[7] 李锟, 田管凤, 马宏伟, 等. 土压平衡盾构掘进参数相关性分析及预测模型[J]. 科学技术与工程, 2021, 21(9): 3814-3821.LI K, TIAN G F, MA H W, et al. Correlation analysis and prediction model of boring parameters of earth pressure balance shield[J]. Science Technology and Engineering, 2021, 21(9): 3814-3821.
[8] 张延杰. 成都富水砂卵石地层EPB盾构土体改良技术及掘进参数研究[D]. 西安: 西安建筑科技大学, 2019.ZHANG Y J. Research on the tunneling parameters and soil improvement technique of the EPB shield tunneling in water-rich sandy cobble layer of Chengdu city[D]. Xi′an: Xi′an University of Architecture and Technology, 2019.
[9] 沈翔, 袁大军, 吴俊, 等. 复杂地层条件下盾构掘进参数分析及预测[J]. 现代隧道技术, 2020, 57(5): 160-166.SHEN X, YUAN D J, WU J, et al. Analysis and prediction of driving parameters of shield tunnelling in complex strata[J]. Modern Tunnelling Technology, 2020, 57(5): 160-166.
[10] 赵博剑, 周建军, 谭忠盛, 等. 复合地层盾构掘进参数及其与地层相关性分析[J]. 土木工程学报, 2017, 50(增刊1): 140-144.ZHAO B J, ZHOU J J, TAN Z S, et al. Variation of shield boring parameters and correlation analysis in mixed ground[J]. China Civil Engineering Journal, 2017, 50(S1): 140-144.
[11] RAHMANIAN M, MANSOORI E G. An unsupervised gene selection method based on multivariate normalized mutual information of genes[J]. Chemometrics and Intelligent Laboratory Systems, 2022, 222: 104512.
[12] ZHOU S B, WANG T, HUANG Y J. Feature screening via mutual information learning based on nonparametric density estimation[J]. Journal of Mathematics, 2022, 2022: 7584374.
[13] 李爱民, 王海隆, 许有成. 优化随机森林算法的城市湖泊DOC质量浓度遥感反演[J]. 郑州大学学报(工学版), 2022, 43(6): 90-96. LI A M, WANG H L, XU Y C. Remote sensing retrieval of urban lake DOC concentration based on optimized random forest algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(6): 90-96.
[14] PAN Y B, ZHU X L. Application of HMM and ensemble learning in intelligent tunneling[J]. Mathematics, 2022,10(10): 1778.

相似文献/References:

[1]瞿同明,王树英,刘朋飞.土压平衡盾构土仓排土引起的干砂地层响应特征分析[J].郑州大学学报(工学版),2017,38(01):16.[doi:10.13705/j.issn.1671-6833.2016.04.028]
 Qu Tongming,Wang Shuying,Liu Pengfei.Analysis on effect of soil extracting in EPB shield chamber on response of dry sand based on Particle Flow Code[J].Journal of Zhengzhou University (Engineering Science),2017,38(01):16.[doi:10.13705/j.issn.1671-6833.2016.04.028]

更新日期/Last Update: 2024-01-25