[1] XU X D, LIU H W, YAO M H. Recent progress of anomaly detection[ J] . Complexity, 2019, 2019: 1-11. [2] JIANG J F, HAN G J, LIU L, et al. Outlier detection approaches based on machine learning in the internet-ofthings [ J ] . IEEE Wireless Communications, 2020, 27 (3) : 53-59.
[3] 汪祖民, 王冬昊, 梁霞, 等. 基于 DBSCAN_GAN_XGBoost 的网络入侵检测方法[ J] . 郑州大学学报( 工学 版) , 2022, 43(3) : 44-51.
WANG Z M, WANG D H, LIANG X, et al. Network intrusion detection method based on DBSCAN _GAN _XGBoost[ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(3) : 44-51.
[4] 陈梦婷, 王兴刚, 刘文予. 基于密集深度插值的 3D 人体姿态 估 计 方 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2021, 42(3) : 26-32.
CHEN M T, WANG X G, LIU W Y. Dense depth interpolation for 3D human pose estimation [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42 (3) : 26-32.
[5] 吴小燕, 刘强, 朱成璋. 社交网络中协同舆论欺诈检 测方法应用研究[ J] . 郑州大学学报(工学版) , 2022, 43(2) : 7-14.
WU X Y, LIU Q, ZHU C Z. Research on application of collaborative public opinion fraud detection method in social network[ J] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(2) : 7-14.
[6] TANG B, HE H B. A local density-based approach for outlier detection[ J] . Neurocomputing, 2017, 241: 171- 180.
[7] YANG J W, RAHARDJA S, FRÄNTI P. Mean-shift outlier detection and filtering [ J ] . Pattern Recognition, 2021, 115: 107874.
[8] AFRASSA K W, COSGUN G, GURSOY U F, et al. On the community discovery methods for complex networks: a case study[ C]∥2020 15th Conference on Computer Science and Information Systems ( FedCSIS) . Piscataway: IEEE, 2020: 473-477.
[9] CHEN Y W, ZHOU L D, PEI S W, et al. KNN-BLOCK DBSCAN: fast clustering for large-scale data [ J] . IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6) : 3939-3953.
[10] KEMPE D K, KLEINBERG J M, TARDOS É. Maximizing the spread of influence through a social network[ J] . Theory of Computing, 2015, 11: 105-147.
[11] ZHANG J X, CHEN D B, DONG Q, et al. Identifying a set of influential spreaders in complex networks[ J] . Scientific Reports, 2016, 6(1) : 1-10.
[12] SUN H L, CHEN D B, HE J L, et al. A voting approach to uncover multiple influential spreaders on weighted networks[ J] . Physica A: Statistical Mechanics and Its Applications, 2019, 519: 303-312.
[13] LIU P F, LI L J, FANG S Y, et al. Identifying influential nodes in social networks: a voting approach[ J] . Chaos, Solitons & Fractals, 2021, 152: 111309.
[14] DING J R, SHAH S, CONDON A. DensityCut: an efficient and versatile topological approach for automatic clustering of biological data [ J] . Bioinformatics, 2016, 32(17) : 2567-2576.
[15] DOMINGUES R, FILIPPONE M, MICHIARDI P, et al. A comparative evaluation of outlier detection algorithms: experiments andanalyses [ J ] . Pattern Recognition, 2018, 74: 406-421.