[1] DATTA S J, MAYORAL A, MURTHY SRIVATSA BETTAHALLI N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[ J] . Science, 2022, 376(6597) : 1080-1087. [2] WANG F, ZHANG Z, SHAKIR I, et al. 2D polymer nanosheets for membrane separation [ J] . Advanced science, 2022, 9(8) : 2103814.
[3] BURUGA K, KALATHI J T, KIM K H, et al. Polystyrene-halloysite nano tube membranes for water purification [ J ] . Journal of industrial and engineering chemistry, 2018, 61: 169-180.
[4] ZHAO Q Q, HOU J W, SHEN J N, et al. Long-lasting antibacterial behavior of a novel mixed matrix water puri- fication membrane[ J] . Journal of materials chemistry A, 2015, 3(36) : 18696-18705.
[5] RABIEE H, VATANPOUR V, FARAHANI M H D A, et al. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide ( ZnO ) nanoparticles [ J ] . Separation and purification technology, 2015, 156: 299-310.
[6] WANG Z Y, WANG Z X, LIN S H, et al. Nanoparticletemplated nanofiltration membranes for ultrahigh performance desalination [ J ] . Nature communications, 2018, 9: 2004.
[7] MASHHADIKHAN S, MOGHADASSI A, EBADI AMOOGHIN A, et al. Interlocking a synthesized polymer and bifunctional filler containing the same polymer′s monomer for conformable hybrid membrane systems [ J ] . Journal of materials chemistry A, 2020, 8(7): 3942-3955.
[8] LIU Y, CHEN Z J, LIU G P, et al. Conformation-controlled molecular sieving effects for membrane-based propylene / propane separation [ J ] . Advanced materials, 2019, 31(14) : 1807513.
[9] LI Y, LI S H, XU L H, et al. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation[ J] . Separation and purification technology, 2022, 298: 121552.
[10] CHENG C, SONG W H, ZHAO Q, et al. Halloysite nanotubes in polymer science: purification, characterization, modification and applications [ J] . Nanotechnology reviews, 2020, 9: 323-344.
[11] 张冰, 王秋茹, 姚纪蕾, 等. 壳聚糖 / 埃洛石纳米管复 合多孔颗粒制备[ J] . 郑州大学学报(工学版) , 2014, 35(4) : 52-55. ZHANG B, WANG Q R, YAO J L, et al. Preparation of chitosan / halloysite nanotube hybrid porous beads [ J ] . Journal of Zhengzhou university ( engineering science ) , 2014, 35(4) : 52-55.
[12] LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [ J]. Progress in polymer science, 2014, 39(8): 1498-1525.
[13] GRYLEWICZ A, MOZIA S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review [ J] . Separation and purification technology, 2021, 256: 117827.
[14] PRISHCHENKO D A, ZENKOV E V, MAZURENKO V V, et al. Molecular dynamics of the halloysite nanotubes [ J ] . Physical chemistry chemical physics, 2018, 20 (8) : 5841-5849.
[15] SANTOS A C, FERREIRA C, VEIGA F, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold[ J] . Advances in colloid and interface science, 2018, 257: 58-70.
[16] GUIMARÃES L, ENYASHIN A N, SEIFERT G, et al. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models[ J] . The journal of physical chemistry C, 2010, 114(26) : 11358-11363.
[17] YAH W O, TAKAHARA A, LVOV Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [ J] . Journal of the American chemical society, 2012, 134(3) : 1853-1859.
[18] LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [ J] . Progress in polymer science, 2014, 39(8) : 1498- 1525.
[19] YU L, WANG H X, ZHANG Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment [ J ] . Environmental science: nano, 2016, 3 (1) : 28-44.
[20] PASBAKHSH P, CHURCHMAN G J, KEELING J L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers[ J] . Applied clay science, 2013, 74: 47-57.
[21] GHANBARI M, EMADZADEH D, LAU W J, et al. Super hydrophilic TiO2 / HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application [ J] . Desalination, 2015, 371: 104-114.
[22] LIU M, GUO B, DU M, et al. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol / halloysite nanotubes solution and its effect on properties of composite film [J]. Applied physics A, 2007, 88(2): 391-395.
[23] YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: recent research advances and future prospects[ J] . Applied clay science, 2015, 112: 75-93.
[24] LUO P, ZHANG J S, ZHANG B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr ( Ⅵ) removal [ J ] . Industrial & engineering chemistry research, 2011, 50(17) : 10246-10252.
[25] ZHU K C, DUAN Y Y, WANG F, et al. Silane-modified halloysite / Fe3O4 nanocomposites: simultaneous removal of Cr(Ⅵ) and Sb(Ⅴ) and positive effects of Cr(Ⅵ) on Sb( Ⅴ) adsorption [ J ] . Chemical engineering journal, 2017, 311: 236-246.
[26] MA Y F, ZHAO Z H, TANG B Y, et al. Facile preparation of polymer-grafted halloysite nanotubes via a redox system: a novel approach to construct antibacterial hydrogel[J]. Macromolecular research, 2020, 28(10): 948-952.
[27] ALIREZAEI S, MONIRVAGHEFI S M, SALEHI M, et al. Wear behavior of Ni-P and Ni- P -Al 2O3 electroless 第 1 期 张亚涛,等:埃洛石纳米管在膜分离领域的应用 11 coatings[ J] . Wear, 2007, 262(7 / 8) : 978-985.
[28] GONZÁLEZ-RIVERA J, SPEPI A, FERRARI C, et al. Structural, textural and thermal characterization of a confined nanoreactor with phosphorylated catalytic sites grafted onto a halloysite nanotube lumen [ J] . Applied clay science, 2020, 196: 105752.
[29] ZHANG B F, GUO H Z, YUAN P, et al. Novel acidbased geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration[ J] . Cement and concrete composites, 2020, 110: 103601.
[30] FENG J, FAN H, ZHA D A, et al. Characterizations of the formation of polydopamine-coated halloysite nanotubes in various pH environments [ J ] . Langmuir, 2016, 32 (40) : 10377-10386.
[31] POIKELISPÄÄ M, DAS A, DIERKES W, et al. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber-butadiene rubber blend [ J ] . Journal of applied polymer science, 2013, 127 (6) : 4688-4696.
[32] ZHANG H L, REN T F, JI Y J, et al. Selective modification of halloysite nanotubes with 1-pyrenylboronic acid: a novel fluorescence probe with highly selective and sensitive response to hyperoxide[ J] . ACS applied materials & interfaces, 2015, 7(42) : 23805-23811.
[33] LISUZZO L, CAVALLARO G, MILIOTO S, et al. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis[ J] . Journal of colloid and interface science, 2022, 608: 424-434.
[34] GE L, LIN R J, WANG L, et al. Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation [ J ] . Separation and purification technology, 2017, 173: 63-71.
[35] PARK S, RYU J, CHO H Y, et al. Halloysite nanotubes loaded with HKUST-1 for CO2 adsorption [ J ] . Colloids and surfaces A: physicochemical and engineering aspects, 2022, 651: 129750.
[36] MISHRA G, MUKHOPADHYAY M. Enhanced antifouling performance of halloysite nanotubes ( HNTs) blended poly( vinyl chloride) ( PVC / HNTs) ultrafiltration membranes: for water treatment[ J] . Journal of industrial and engineering chemistry, 2018, 63: 366-379.
[37] LIAO L B, LV G C, CAI D X, et al. The sequential intercalation of three types of surfactants into sodium montmorillonite [ J ] . Applied clay science, 2016, 119: 82-86.
[38] DU M L, GUO B C, JIA D M. Thermal stability and flame retardant effects of halloysite nanotubes on poly ( propylene) [ J] . European polymer journal, 2006, 42 (6) : 1362-1369.
[39] MOZIA S, GRYLEWICZ A, ZGRZEBNICKI M, et al. Investigations on the properties and performance of mixedmatrix polyethersulfone membranes modified with halloysite nanotubes[ J] . Polymers, 2019, 11(4) : 671.
[40] KAMAL N, AHZI S, KOCHKODAN V. Polysulfone / halloysite composite membranes with low fouling properties and enhanced compaction resistance [ J ] . Applied clay science, 2020, 199: 105873.
[41] WAN IKHSAN S N, YUSOF N, MAT NAWI N I, et al. Halloysite nanotube-ferrihydrite incorporated polyethersulfone mixed matrix membrane: effect of nanocomposite loading on the antifouling performance [ J ] . Polymers, 2021, 13(3) : 441.
[42] CHEN Y F, ZHANG Y T, LIU J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions [ J] . Chemical engineering journal, 2012, 210: 298-308.
[43] GUO W, LIU W, XU L, et al. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[ J] . Journal of materials science & technology, 2020, 46: 237-247.
[44] ZHAO Q Q, LIU C C, LIU J D, et al. Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme[ J] . RSC advances, 2015, 5: 38646-38653.
[45] DUAN L L, HUANG W, ZHANG Y T. High-flux, antibacterial ultrafiltration membranes by facile blending with N-halamine grafted halloysite nanotubes [ J ] . RSC advances, 2015, 5(9) : 6666-6674.
[46] HE H R, XU P, WANG D M, et al. Polyoxometalatemodified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration [ J] . Separation and purification technology, 2022, 295: 121348.
[47] WANG Q Q, CUI J Y, LIU S W, et al. Facile preparation of halloysite nanotube-modified polyvinylidene fluoride composite membranes for highly efficient oil / water emulsion separation [ J ] . Journal of materials science, 2019, 54(11) : 8332-8345.
[48] WANG Y H, ZHANG X R, LI J P, et al. Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes [ J]. Journal of membrane science, 2019, 573: 602-611. [49] DUAN L L, ZHAO Q Q, LIU J D, et al. Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification[ J] . Environmental science: water research and technology, 2015, 1(6) : 874-881.
[50] ZHU L P, WANG H X, BAI J, et al. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination [ J ] . Desalination, 2017, 420: 145-157.
[51] MA J, HE Y, TANG X D, et al. Stable graphene oxidehalloysite composite membrane with enhanced permeability for efficient dye desalination[ J] . Separation and purification technology, 2021, 266: 118067.
[52] AMID M, NABIAN N M, DELAVAR M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil / water emulsion separation[ J]. Separation and purification technology, 2020, 251: 117332.
[53] LI H, HOU J W, BENNETT T D, et al. Templated growth of vertically aligned 2D metal-organic framework nanosheets[ J] . Journal of materials chemistry A, 2019, 7(10) : 5811-5818.
[54] AFSHOUN H R, POURAFSHARI CHENAR M, MORADI M R, et al. Effects of halloysite nanotubes on the morphology and CO2 / CH4 separation performance of Pebax / polyetherimide thin-film composite membranes[ J] . Journal of applied polymer science, 2020, 137(28) : 48860.
[55] CHEHRAZI E, SHARIF A, KARIMI M. Rational design of halloysite surface chemistry for high performance nanotube-thin film nanocomposite gas separation membranes [J]. ACS applied materials & interfaces, 2020, 12(33): 37527-37537.
[56] BULBUL Y E, OKUR M, DEMIRTAS-KORKMAZ F, et al. Development of PCL / PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system[ J] . Applied clay science, 2020, 186: 105430.
[57] GONG Z S, ZHENG S L, ZHANG J, et al. Cross-linked PVA/ HNT composite separator enables stable lithiumorganic batteries under elevated temperature [ J ]. ACS applied materials & interfaces, 2022, 14(9): 11474-11482. [58] LV Y K, SUN X, YAN S, et al. Solvent-free halloysite nanotubes nanofluids based polyacrylonitrile fibrous membranes for protective and breathable textiles[ J] . Composites communications, 2022, 33: 101211.