[1]方宏远,董智峰,薛冰寒,等.高聚物注浆修复面板脱空堤坝的探地雷达波场特征分析[J].郑州大学学报(工学版),2024,45(03):1-6.[doi:10.13705/j.issn.1671-6833.2023.06.012]
 FANG Hongyuan,ONG Zhifeng,UE Binghan,et al.Analysis of Ground Penetrating Radar Wave Field Characteristics of Dam Face Disengaging Repaired by Polymer Grouting[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):1-6.[doi:10.13705/j.issn.1671-6833.2023.06.012]
点击复制

高聚物注浆修复面板脱空堤坝的探地雷达波场特征分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年03期
页码:
1-6
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Analysis of Ground Penetrating Radar Wave Field Characteristics of Dam Face Disengaging Repaired by Polymer Grouting
文章编号:
1671-6833(2024)03-0001-06
作者:
方宏远2 董智峰12 薛冰寒12 雷建伟12
1. 郑州大学 黄河实验室,河南 郑州 450001;2. 郑州大学 国家地方重大基础设施检测与修复技术联合工程实验 室, 河南 郑州 450001
Author(s):
FANG Hongyuan 12ONG Zhifeng 12UE Binghan 12 LEI Jianwei 12
1. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China; 2. National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou University, Zhengzhou 450001, China
关键词:
堤坝 高聚物注浆 时域有限差分法 面板脱空 探地雷达 波场特征
Keywords:
dams polymer grouting finite-difference time-domain face disengaging ground penetrating radar wave field characteristics
分类号:
TV641. 43
DOI:
10.13705/j.issn.1671-6833.2023.06.012
文献标志码:
A
摘要:
针对高聚物注浆修复堤坝面板脱空病害的修复效果问题,依据实际堤坝面板层间结构和材料介电参数, 基于时域有限差分法和完全匹配层边界条件建立了高聚物注浆修复面板脱空堤坝的探地雷达电磁波计算模型,分 析了雷达中心频率、面板脱空修复程度及脱空区域大小、面板厚度及配筋等因素对高聚物注浆修复面板脱空堤坝 探地雷达波场特征的影响。 结果表明:随着激励源中心频率增大,探地雷达剖面图分辨率逐渐增加;随着脱空区域 长度增加,探地雷达剖面图中产生的水平状界面反射波增长;随着脱空区域深度增加,探地雷达剖面图水平状反射 线之间时间间隔逐渐增大;随着堤坝面板厚度增加,在面板脱空修复区域绕射波和衍射波幅值减小;探地雷达发射 的电磁波遇到钢筋时将产生能量较强的绕射波,强绕射波将脱空区域上下分界面的反射波分割开,难以判断反射 波的水平长度。 根据高聚物注浆修复面板脱空堤坝的探地雷达波场特征,能有效判断堤坝面板脱空区域的高聚物 注浆修复效果,有助于解释实际堤坝面板高聚物注浆修复效果的探地雷达图像。
Abstract:
In view of the effect of polymer grouting in repairing the dam face disengaging, the ground penetrating radar wave field of the dam face disengaging was studied. A calculation models of the dam with panel disengaging repaired by polymer grouting was established based on the finite-difference time-domain method and the perfectly matched layers boundary conditions. The effects of radar center frequency, degree of panel disengaging repair, size of disengaging area, face thickness and reinforcement on ground penetrating radar (GPR) wave field characteristics of the dam face disengaging repaired by polymer grouting were analyzed. The results showed that the resolution of GPR profile increased gradually with the increase of the excitation source center frequency. The horizontal interfacial reflection wave generated in the GPR profiles increased with the length of the disengaging area. The time interval between horizontal reflectors on the GPR profiles increased with the depth of the disengaging area. The amplitudes of the bypassed and diffracted waves in the disengaging repair area decreased with the increase of the dam face thickness. The electromagnetic waves emitted by the GPR encountered the steel reinforcement and generated a wave field. The reflected waves at the upper and lower interfaces of the disengaging area were divided by the strong bypass waves, which made it difficult to judge the horizontal length of the reflected waves.

参考文献/References:

[1] 张丙印, 师瑞锋. 流变变形对高面板堆石坝面板脱空 的影响分析[J]. 岩土力学, 2004, 25(8): 1179-1184. ZHANG B Y, SHI R F. Influence of creeping on separation between concrete slab and cushion layer in high concrete face rock-fill dam [ J]. Rock and Soil Mechanics, 2004, 25(8): 1179-1184. 

[2] 李宗坤, 宋子元, 葛巍, 等. 基于模糊集理论的土石 坝开裂破坏风险分析[ J] . 郑州大学学报( 工学版) , 2020, 41(5) : 55-59. LI Z K, SONG Z Y, GE W, et al. Risk analysis of cracking failure of earth-rock dam based on fuzzy set theory [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(5) : 55-59.
 [3] 葛巍, 焦余铁, 洪辛茜, 等. 基于 AHP-BN 法的溃坝 生命损失 风 险 评 价 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2021, 42(3) : 8-12. GE W, JIAO Y T, HONG X Q, et al. Risk assessment of life loss caused by dam breach based on AHP-BN method[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(3) : 8-12.
 [4] 王复明, 李嘉, 石明生, 等. 堤坝防渗加固新技术研 究与应用[ J] . 水力发电学报, 2016, 35(12) : 1-11. WANG F M, LI J, SHI M S, et al. New seepage-proof and reinforcing technologies for dikes and dams and their applications [ J ] . Journal of Hydroelectric Engineering, 2016, 35(12) : 1-11. 
[5] LI M J, FANG H Y, DU M R, et al. The behavior of polymer-bentonite interface under shear stress [ J] . Construction and Building Materials, 2020, 248: 118680. 
[6] FANG H Y, ZHANG H, XUE B H, et al. Coordination characteristics analysis of deformation between polymer anti-seepage wall and earth dam under traffic load [ J] . Water, 2022, 14(9) : 1442. 
[7] 郭成超, 杨建超, 石明生, 等. 高密度电法在高聚物 防渗墙 检 测 中 的 应 用 研 究 [ J] . 地 球 物 理 学 进 展, 2019, 34(2) : 709-716. GUO C C, YANG J C, SHI M S, et al. Application of high density electrical method in detection of polymer cutoff wall [J]. Progress in Geophysics, 2019, 34(2): 709-716.
 [8] LIU H, SHI Z S, LI J H, et al. Detection of road cavities in urban cities by 3D ground-penetrating radar [ J] . GEOPHYSICS, 2021, 86(3) : WA25-WA33. 
[9] FENG D S, WANG X, ZHANG B. Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD [ J ] . Construction and Building Materials, 2018, 185: 220-229. 
[10] 徐浩, 刘江平, 余信江. 大坝面板脱空地质雷达波场 数值模拟与瞬时属性分析[ J] . 中南大学学报( 自然 科学版) , 2021, 52(2) : 489-497. XU H, LIU J P, YU X J. Numerical simulation of dam face disengaging ground penetrating radar wave field and instantaneous attribute analysis [ J ] . Journal of Central South University ( Science and Technology ) , 2021, 52 (2) : 489-497. 
[11] 张杨, 周黎明, 肖国强. 堤防隐患探测中的探地雷达 波场特征分析与应用[ J] . 长江科学院院报, 2019, 36 (10) : 151-156. ZHANG Y, ZHOU L M, XIAO G Q. Analysis and application of wave field of ground penetration radar in defect detection of embankment [ J] . Journal of Yangtze River Scientific Research Institute, 2019, 36(10) : 151-156. 
[12] WARREN C, GIANNOPOULOS A, GRAY A, et al. A CUDA-based GPU engine for gprMax: open source FDTD electromagnetic simulation software[ J] . Computer Physics Communications, 2019, 237: 208-218. [13] LAX M, NELSON D F. Maxwell equations in material form[ J] . Physical Review, 1976, 13(4) : 1777-1784. 
[14] YEE K E. Numerical solution of initial boundary value problems involving maxwell′s equations in isotropic media [ J] . IEEE Transactions on Antennas and Propagation, 1966, 14(3) : 302-307.
 [15] CHEN H W, HUANG T M. Finite-difference time-domain simulation of GPR data[ J] . Journal of Applied Geophysics, 1998, 40(1 / 2 / 3) : 139-163.
 [16] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[ J] . Journal of Computational Physics, 1994, 114(2) : 185-200. 
[17] 马月红. 时域有限差分法及其在电磁波测井正演问题 中应用[D] . 秦皇岛: 燕山大学, 2007. MA Y H. FDTD method and its application to simulation of electromagnetic well-logging tool response [ D] . Qinhuangdao: Yanshan University, 2007. 
[18] LEI J W, XUE B H, FANG H Y, et al. Forward analysis of GPR for underground pipes using CUDA-implemented conformal symplectic Euler algorithm[ J] . IEEE Access, 2020, 8: 205590-205599.
 [19] LEI J W, FANG H Y, XUE B H, et al. A parallel conformal symplectic Euler algorithm for GPR numerical simulation on dispersive media [ J] . IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.

更新日期/Last Update: 2024-04-29