参考文献/References:
[1]李艳霞,柴毅,胡友强,等不平衡数据分类方法综述[J].控制与决策,2019,34(4):673-688.LIU Y X,CHAIY,HUYQ,et al.Review of imbalanceddataclassification methods[J].Control and Decision,2019,34(4):673-688.
[2]胡峰,王蕾,周耀.基于三支决策的不平衡数据过采样方法[J].电子学报,2018,46(1):135-144.
HU F,WANG L,ZHOU Y.An oversampling methodforimbalance data based on three-way decisionmodel[J].Acta Electronica Sinica,2018,46(1):135-144.[3]张震,张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(3):25-29.
ZHANG Z,ZHANG Y J. Iris recognition methodbased on support vector machine and Hammingdistance [J]. Journal of Zhengzhou University(EngineeringScience), 2015,36(3):25-29.
[4]韩敏,朱新荣.不平衡数据分类的混合算法[J].控制理论与应用,2011,28(10):1485-1489.
HAN M,ZHU X R.Hybrid algorithm for classification ofunbalanced datasets[J]. Control Theory & Applications, 2011,28(10):1485-1489.
[5]刘定祥,乔少杰,张永清,等.不平衡分类的数据采样方法综述[J].重庆理工大学学报(自然科学),2019,33(7):102-112.
LIU D X,QIAO S J,ZHANG Y Q,et al. A surveyondata sampling methods in imbalanceclassification[J].Journal of Chongqing Universityof Technology(NaturalScience),2019,33(7):102-112.
[6]孙艳歌,邵罕,杨艳聪,基于代价敏感不平衡数据流分类算法[J].信阳师范学院学报(自然科学版),
2019,32(4):670-674.
SUN Y G,SHAO H,YANG Y C. Classification for im-balanced data streams based on cost- sensitive[J].Jour-nal of Xinyang Normal University(Natural Seience Edition),2019,32(4):670-674.
[7]王乐,韩萌,李小娟,等.不平衡数据集分类方法综述[J].计算机工程与应用,2021,57(22):42-52.
WANG L,HAN M,LI X J, et al. Review ofclassifica-tion methods for unbalanced datasets[J].Computer En-gineering and Applications,2021,57(22):42-52.
[8] ZHANGZW,TIAN HP.YAN LZ,et al.Learning acredal classifier with optimized and adaptive multiestima- tion for missing data imputationU].IEEE Transactions on Systems,Man, and Cybernetics:Systems, 2022,52 (7):4092-4104.
[9] SHAFER G.A mathematical theory of evidence [M].Princeton:Princeton University Press,1976.
[10] HE H B,GARCIA EA. Learning from imbalanced dataU].IEEE Transactions on Knowledge and Data Engi-neering, 2009,21(9):1263-1284.
[11] CHAWLAN V.BOWYER K W,HALL L O,etal.SMOTE:synthetic minority over-sampling techniquep]Journal of Artificial Intelligence Research,2002,16:321-357.
[12] GUO H X,LIY J,SHANG J,et al. Learrsjng fromclass-irmbalanced data:review of methods and applica-tions[J].Expert Systems With Applications,2017,73: 220-239.
[13] LIN W C, TSAI C F, HU Y H, et al. Clustering-basedundersampling in class-imbalanced data[J], InformationSciences,2017,409-410:17-26.
[14] LIU X Y,WU J X, ZHOU Z H. Exploratory undersam-pling for class-imbalance learning[J]. IEEE Transactionson Systems,Man, and Cybernetics Part B,Cybernetics:Publication of the IEEE Systems, Man, and CybernelicsSociety,2009,39(2):539-550.
[15] CHALLA S, KOKS D. Bayesian and Dempster-Shafer fu-sion[J]. Sādhanā,2004,29:145-174.
[16] SMETS P. Decision making in the TBM: the necessity ofthe pignistic transformation[J]. International Journal of Approximate Reasoning,2005,38(2):133-147.
[17] JIMENEZ-CASTANOC,ALVAREZ-MEZAA,OROZCO-GUTIERREZ A. Enhanced automatic twin sup-port vector machine for imbalanced data classification[J]. Pattern. Recognition, 2020, 107:107442.
[18]逯鹏,李奇航,尚莉伽,等,基于优化极限学习机的CVD预测模型研究[J].郑州大学学报(工学版),2019,40(2):1-5
LU P,LI Q H,SHANG L J, et al. A CVD predictionmodel based on optimized extreme learning machine[J].Journal of Zhengzhou University(Engineering Science),2019,40(2):1-5.
相似文献/References:
[1]李强,石陆魁,刘恩海,等.基于流形学习的基因微阵列数据分类方法[J].郑州大学学报(工学版),2012,33(05):121.[doi:10.3969/j.issn.1671-6833.2012.05.027]
LI Qiang,SHI Lukui,LIU Enhai,et al.A Classification Method Based on ManifoldLearning for Gene Microarray Data[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):121.[doi:10.3969/j.issn.1671-6833.2012.05.027]
[2]李向宁,郝克刚..一种基于分类和预测技术的产品成本估算系统研究与应用[J].郑州大学学报(工学版),2006,27(03):77.[doi:10.3969/j.issn.1671-6833.2006.03.018]
LI Xiangning,Hao Kegang.Research and application of product cost estimation system based on classification and prediction technology[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):77.[doi:10.3969/j.issn.1671-6833.2006.03.018]