[1]陈婧华,张琳娟,卢 丹,等.基于改进粒子群优化算法的分布式电源集群划分方法[J].郑州大学学报(工学版),2023,44(05):77-85.[doi:10.13705/j.issn.1671-6833.2023.05.012]
 CHEN Jinghua,ZHANG Linjuan,LU Dan,et al.Cluster Partition Method of Distributed Power Supply Based on Improved Particle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):77-85.[doi:10.13705/j.issn.1671-6833.2023.05.012]
点击复制

基于改进粒子群优化算法的分布式电源集群划分方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年05期
页码:
77-85
栏目:
出版日期:
2023-08-20

文章信息/Info

Title:
Cluster Partition Method of Distributed Power Supply Based on Improved Particle Swarm Optimization Algorithm
作者:
陈婧华1 张琳娟1 卢 丹1 郭 璞1 任俊跃2 李景丽2 李忠文2
1. 国网河南省电力公司经济技术研究院,河南 郑州 450000;2. 郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
CHEN Jinghua1 ZHANG Linjuan1 LU Dan1 GUO Pu1 REN Junyue2 LI Jingli2 LI Zhongwen2
1. State Grid Henan Electric Power Company Economic and Technological Research Institute, Zhengzhou 450000, China; 2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China)
关键词:
集群划分 粒子群算法 模块度 分布式电源 源荷有功匹配度 源荷无功匹配度
Keywords:
cluster division particle swarm algorithm modularity distributed generation active power matching degree reactive power matching degree
分类号:
TM734;TM615
DOI:
10.13705/j.issn.1671-6833.2023.05.012
文献标志码:
A
摘要:
随着新型电力系统建设进程的推进,分布式电源并网比重逐渐增加,为解决新型配电网分布式电源调控 困难的问题,采用改进粒子群优化算法对大规模分布式电源进行集群划分。 首先,在模块度划分标准基础上,引入 群内源荷有功匹配度和无功匹配度,提出由三者加权组合的综合性能指标,构建基于综合指标体系的集群划分优 化模型;其次,采用惯性权重动态递减策略改进二进制粒子群优化算法,使其惯性权重动态变化,优化粒子位置与 速度的更新进程,提高粒子群优化算法的寻优效率;最后,采用改进二进制粒子群优化算法对基于综合指标体系的 集群划分优化模型进行寻优,基于此对 IEEE33 节点、某 10 kV 实际配网馈线系统进行集群划分。 结果表明:基于 综合指标体系的集群划分方法在保障划分结果模块度基本不变的基础上,可将有功匹配度和无功匹配度分别提高 30%左右;而改进粒子群优化算法对提高划分结果的各个指标值均具有明显效果。
Abstract:
With the development of new power system construction, the proportion of grid-connected distributed power gradually increased. In order to solve the difficult problem of the regulation of distributed power in new distribution network, the improved particle swarm optimization algorithm was proposed to cluster the large-scale distributed power. Firstly, on the basis of the modularity division standard, the active power matching degree and reactive power matching degree of the group internal load were introduced, and the comprehensive performance indexes weighted by the three were proposed to construct the cluster division optimization model based on the comprehensive index system. Then the inertia weight dynamic decline strategy was used to improve the binary particle swarm optimization algorithm to make the inertia weight change dynamically, optimizing the updating process of particle position and velocity, and improving the optimization efficiency of particle swarm optimization algorithm. Finally, the improved binary particle swarm optimization algorithm was used to optimize the clustering optimization model based on the comprehensive index system. Based on this, cluster division of IEEE33 nodes and a 10 kV actual distribution network feeder system was carried out. The results showed that the cluster partitioning method based on the comprehensive index system could improve the active power matching degree and reactive power matching degree by about 30%, respectively, on the basis of keeping the modularity of the partitioning result basically unchanged. The improved particle swarm optimization algorithm had obvious effect on improving each index value of partitioning results.

参考文献/References:

[1] 国家统计局. 中华人民共和国 2021 年国民经济和社会 发展统计公报 [ EB / OL] . ( 2022 - 02 - 28) [ 2022 - 10 - 12 ] . http: ∥ www. stats. gov. cn / xxgk / sjfb / zxfb2020 / 202202 / t20220228_1827971. html. 

National Bureau of Statistics . Statistical bulletin of national economic and social development in 2021. [EB / OL] . (2022-02-28) [2022-10- 12] . http:∥www. stats. gov. cn / xxgk / sjfb / zxfb2020 / 202202 / t20220228_1827971. html. 
[2] 史如新, 王德顺, 余涛, 等. 基于 NARX 神经网络-小 波分解光伏发电功率预测[ J] . 郑州大学学报( 工学 版) , 2020, 41(6) :79-84. 
SHI R X, WANG D S, YU T, et al. Prediction of photovoltaic power generation based on NARX neural networkwavelet decomposition[ J] . Journal of Zhengzhou University (Engineering Science) , 2020, 41(6) :79-84.
 [3] 高平平. 考虑灵活性的分布式发电集群划分方法研究 [D] . 合肥: 合肥工业大学,2020. 
GAO P P. Research on partition method of distributed power generation cluster considering flexibility [ D ] . Hefei: Hefei University of Technology,2020. 
[4] 张跃. 基于分布式发电与微网的一种新型电力集群网 络技术研究[D] . 青岛: 青岛科技大学,2010. 
ZHANG Y. Research on a new power cluster network technology based on distributed generation and microgrid [D] . Qingdao: Qingdao University of Science & Technology,2010. 
[5] 薛峰, 常康, 汪宁渤. 大规模间歇式能源发电并网集 群协调 控 制 框 架 [ J ] . 电 力 系 统 自 动 化, 2011, 35 (22) :45-53. 
XUE F, CHANG K, WANG N B. Coordinated control frame of large-scale intermittent power plant cluster[ J] . Automation of Electric Power Systems, 2011, 35 ( 22) : 45-53. 
[6] 魏震波. 复杂网络社区结构及其在电网分析中的应用 研究综 述 [ J] . 中 国 电 机 工 程 学 报, 2015, 35 ( 7) : 1567-1577. 
WEI Z B. Overview of complex networks community structure and its applications in electric power network analysis[ J] . Proceedings of the CSEE, 2015, 35 ( 7 ) : 1567-1577.
 [7] 龚尚福, 陈婉璐, 贾澎涛. 层次聚类社区发现算法的 研究[ J] . 计 算 机 应 用 研 究, 2013, 30 ( 11) : 3216 - 3220, 3227. 
GONG S F, CHEN W L, JIA P T. Survey on algorithms of community detection [ J ] . Application Research of Computers, 2013, 30(11) :3216-3220, 3227. 
[8] 鲍威, 朱涛, 赵川, 等. 基于聚类分析的三阶段二级 电压控制分区方法[ J] . 电力系统自动化, 2016, 40 (5) : 127-132. 
BAO W, ZHU T, ZHAO C, et al. A three-stage network partition method for secondary voltage control based on agglomerative analysis[ J] . Automation of Electric Power Systems, 2016, 40(5) : 127-132. 
[9] 胡雪凯, 尹瑞, 时珉, 等. 基于改进粒子群算法的分 布式光伏集群划分与无功优化策略[ J] . 电力电容器 与无功补偿, 2021, 42(4) :14-21. 
HU X K, YIN R, SHI M, et al. Distributed photovoltaic cluster partition and reactive power optimization strategy based on improved particle swarm optimization algorithm [ J] . Power Capacitor & Reactive Power Compensation, 2021, 42(4) :14-21. 
[10] 魏震波, 刘俊勇, 程飞, 等. 利用社区挖掘的快速无 功电压分区方法[ J] . 中国电机工程学报, 2011, 31 (31) :166-172. 
WEI Z B, LIU J Y, CHENG F, et al. Fast power network partitioning method in mvar control space based on community mining[ J] . Proceedings of the CSEE, 2011, 31(31) :166-172. 
[11] 杨秀媛, 董征, 唐宝, 等. 基于模糊聚类分析的无功 电压 控 制 分 区 [ J] . 中 国 电 机 工 程 学 报, 2006, 26 (22) :6-10. 
YANG X Y, DONG Z, TANG B, et al. Power network partitioning based on fuzzy clustering analysis [ J] . Proceedings of the CSEE, 2006, 26(22) :6-10. 
[12] 丁明, 刘先放, 毕锐, 等. 采用综合性能指标的高渗 透率分布式电源集群划分方法[ J] . 电力系统自动化, 2018, 42(15) :47-52, 141. 
DING M, LIU X F, BI R, et al. Method for cluster partition of high-penetration distributed generators based on comprehensive performance index [ J ] . Automation of Electric Power Systems, 2018, 42(15) :47-52, 141.
 [13] 于琳, 孙莹, 徐然, 等. 改进粒子群优化算法及其在 电网无功分区中的应用[ J] . 电力系统自动化, 2017, 41(3) :89-95, 128.
YU L, SUN Y, XU R, et al. Improved particle swarm optimization algorithm and its application in reactive power partitioning of power grid [ J] . Automation of Electric Power Systems, 2017, 41(3) :89-95, 128. 
[14] NEWMAN M E J. Analysis of weighted networks [ J ] . Physical Review E,2004,70(5) : 1-9. 
[15] 梁志峰, 叶畅, 刘子文, 等. 分布式电源集群并网调 控: 体系架构与 关 键 技 术 [ J] . 电 网 技 术, 2021, 45  (10) : 3791-3802.
 LIANG Z F, YE C, LIU Z W, et al. Grid-connected regulation of distributed power clusters: architecture and key technologies [ J ] . Power System Technology, 2021, 45 (10) : 3791-3802. 
[16] 张军, 张新慧, 高震, 等. 基于改进二进制粒子群算 法的孤岛划分方法[ J] . 电网与清洁能源, 2022, 38 (7) :54-62. 
ZHANG J, ZHANG X H, GAO Z, et al. An island division method based on improved binary particle swarm optimization algorithm [ J ] . Advances of Power System & Hydroelectric Engineering, 2022, 38(7) :54-62. 
[17] 于琳. 主动配电网多目标规划及控制分区研究[ D] . 济南: 山东大学,2017.
 YU L. Research on multi-objective planning and control partition of active distribution ne

相似文献/References:

[1]杨文强,张素君,郭昊.求解仓储作业优化问题的多物种协同进化算法[J].郑州大学学报(工学版),2020,41(06):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
 YANG Wenqiang,ZHANG Sujun,GUO Hao.Operation Optimization of Warehousing by Multispecies Co-evolution Algorithm[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
[2]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(05):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

更新日期/Last Update: 2023-09-04