[1]欧阳聪,关静,杨鸣.基于资源分配和动态分组的合作协同演化算法[J].郑州大学学报(工学版),2023,44(05):10-16.[doi:10.13705/j.issn.1671-6833.2023.05.010]
 OUYANG Cong,GUAN Jing,YANG Ming.Cooperative Co-evolution Algorithm Based on Resource Allocation and Dynamic Grouping[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):10-16.[doi:10.13705/j.issn.1671-6833.2023.05.010]
点击复制

基于资源分配和动态分组的合作协同演化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年05期
页码:
10-16
栏目:
出版日期:
2023-08-20

文章信息/Info

Title:
Cooperative Co-evolution Algorithm Based on Resource Allocation and Dynamic Grouping
作者:
欧阳聪1关静2杨鸣1
1. 中国地质大学(武汉) 计算机学院,湖北 武汉 430078;2. 中国舰船研究设计中心,湖北 武汉 430064
Author(s):
OUYANG Cong1 GUAN Jing2 YANG Ming1
关键词:
合作型协同演化 大规模全局优化 资源分配 动态分组 贡献值
Keywords:
cooperative co-evolution large scale global optimization resource allocation dynamic grouping contributio
分类号:
TP301. 6
DOI:
10.13705/j.issn.1671-6833.2023.05.010
文献标志码:
A
摘要:
合作型协同演化算法在处理大规模全局优化问题中的决策变量完全可分或者完全不可分的问题时,精确 的分组方法并不能保证提高算法性能,甚至可能会导致性能下降。 针对上述问题,提出了一种基于资源分配和动 态分组的合作协同演化算法(RG-CCFR3) 。 该算法以 CCFR3 为基础,当决策变量完全可分或完全不可分时,首先 设置数组与数组索引,用于确定每轮优化时的分组大小;其次,根据分组大小对决策变量进行随机分组,使得在不 同轮次的优化中每组决策变量的分配更多样化;最后,修改了 CCFR3 中每轮优化时的处理逻辑,保证了每轮优化 的次数一致。 通过 CEC2013 和 CEC2010 中的基准测试函数检验算法的性能,将 RG-CCFR3 与 CCFR3、MMO-CC、 CBCC-RDG3 进行对比并进行显著性检验。 结果表明:对比 CCFR3 算法,RG-CCFR3 算法在处理决策变量完全可分 或者完全不可分的问题时,在多数情况下具有更好的性能;与 MMO-CC、CBCC-RDG3 算法相比,RG-CCFR3 算法具 有一定的竞争力。
Abstract:
The precise grouping method might not constantly improve the algorithm performance and sometimes even lead to performance degradation when the cooperative co-evolutionary algorithm was used to solve large-scale global optimization problems with entirely separable or fully non-separable decision variables. A cooperative co-evolutionary algorithm (RG-CCFR3) based on resource allocation and dynamic grouping was proposed to address the above problems. The algorithm was based on CCFR3, where the array with the array index was first set for determining the group size at each round of optimization when the decision variables were fully divisible or fully indivisible. Secondly, the decision variables were randomly grouped according to the group size, which made the assignment of each group of decision variables more diverse in different rounds of optimization. Finally, the processing logic in CCFR3 at each round of optimization was modified to ensure a consistent number of rounds of optimization. The benchmark test functions in CEC2013 and CEC2010 were selected to examine the algorithm′s performance. And RG-CCFR3 was compared with CCFR3, MMO-CC, and CBCC-RDG3 and tested for significance. The experimental results showed that, compared with the CCFR3 algorithm, the RG-CCFR3 algorithm would perform better in most cases when dealing with problems with entirely separable or non-separable decision variables; it was also competitive with the MMO-CC and CBCC-RDG3 algorithms.

参考文献/References:

[1] BENNER P. Solving large-scale control problems [ J ] . IEEE Control Systems Magazine, 2004, 24(1) : 44-59.

 [2] LIANG J, QIAO K J, YU K J, et al. Utilizing the relationship between unconstrained and constrained Pareto fronts for constrained multiobjective optimization [ J ] . IEEE Transactions on Cybernetics, 2023, 53 ( 6 ) : 3873-3886. 
[3] YU K J, ZHANG D Z, LIANG J, et al. A correlationguided layered prediction approach for evolutionary dynamic multiobjective optimization[EB / OL] . ( 2022-07- 22) [ 2022 - 11 - 13 ] . https:∥ieeexplore. ieee. org / abstract / document / 9837296. 
[4] LIANG J, BAN X X, YU K J, et al. A survey on evolutionary constrained multiobjective optimization[ J] . IEEE Transactions on Evolutionary Computation, 2022, 27 (2) : 201-221.
 [5] 杨振宇. 基于自然计算的实值优化算法与应用研究 [D] . 合肥: 中国科学技术大学, 2010. 
YANG Z Y. Research on real-valued optimization algorithm based on natural computing and its application[D]. Hefei: University of Science and Technology of China, 2010.
 [6] 高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综 述[J]. 郑州大学学报(工学版), 2022, 43(3): 21-30. 
GAO Y L, YANG Q W, WANG X F, et al. Overview of new swarm intelligent optimization algorithms[ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(3) : 21-30.
 [7] PENG X G, LIU K, JIN Y C. A dynamic optimization approach to the design of cooperative co-evolutionary algorithms[ J] . Knowledge-Based Systems, 2016, 109: 174- 186.
 [8] YANG P, TANG K, YAO X. A parallel divide-and-conquer-based evolutionary algorithm for large-scale optimization[ J] . IEEE Access, 2019, 7: 163105-163118. 
[9] PENG X G, JIN Y C, WANG H D. Multimodal optimization enhanced cooperative coevolution for large-scale optimization [ J ] . IEEE Transactions on Cybernetics, 2019, 49(9) : 3507-3520.
 [10] WU Y P, PENG X G, WANG H D, et al. Cooperative coevolutionary CMA-ES with landscape-aware grouping in noisy environments[ J] . IEEE Transactions on Evolutionary Computation, 2023,27(3) :686-700. 
[11] OMIDVAR M N, LI X D, YAO X. Smart use of computational resources based on conlutionary algorithms [C]∥Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2011: 1115-1122.
 [12] YANG M, OMIDVAR M N, LI C H, et al. Efficient resource allocation in cooperative co-evolution for largescale global optimization[ J] . IEEE Transactions on Evolutionary Computation, 2017, 21(4) : 493-505.
 [13] YANG M, ZHOU A M, LI C H, et al. CCFR2: a more efficient cooperative co-evolutionary framework for largescale global optimization [ J ] . Information Sciences, 2020, 512: 64-79.
 [14] YANG M, ZHOU A M, LU X F, et al. CCFR3: a cooperative co-evolution with efficient resource allocation for large-scale global optimization [ J] . Expert Systems with Applications, 2022, 203: 117397.
 [15] OMIDVAR M N, LI X D, MEI Y, et al. Cooperative coevolution with differential grouping for large scale optimization[ J] . IEEE Transactions on Evolutionary Computation, 2014, 18(3) : 378-393.
 [16] OMIDVAR M N, YANG M, MEI Y, et al. DG2: a faster and more accurate differential grouping for large-scale black-box optimization[ J] . IEEE Transactions on Evolutionary Computation, 2017, 21(6) : 929-942. 
[17] SUN Y, KIRLEY M, HALGAMUGE S K. A recursive decomposition method for large scale continuous optimization [ J ] . IEEE Transactions on Evolutionary Computation, 2018, 22(5) : 647-661. 
[18] SUN Y, LI X D, ERNST A, et al. Decomposition for large-scale optimization problems with overlapping components[C]∥2019 IEEE Congress on Evolutionary Computation (CEC) . Piscataway:IEEE, 2019: 326-333. 
[19] YANG M, ZHOU A M, LI C H, et al. An efficient recursive differential grouping for large-scale continuous problems[ J] . IEEE Transactions on Evolutionary Computation, 2021, 25(1) : 159-171.
 [20] YANG Z Y, TANG K, YAO X. Self-adaptive differential evolution with neighborhood search[C]∥2008 IEEE Congress on Evolutionary Computation ( IEEE World Congress on Computational Intelligence ) . Piscataway: IEEE, 2008: 1110-1116. 
[21] YU K J, LIANG J, QU B Y, et al. Dynamic selection preference-assisted constrained multiobjective differential evolution[ J] . IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5) : 2954-2965. 
[22] 温忠麟, 侯杰泰, 马什赫伯特. 结构方程模型检验: 拟合 指数与卡方准则[J]. 心理学报, 2004, 36(2): 186-194. 
WEN Z L, HOU J T,MARSH H W. Structural equation model testing: cutoff criteria for goodness of fit indices and Chi-square test[ J] . Acta Psychologica Sinica, 2004, 36(2) : 186-194.

更新日期/Last Update: 2023-09-03