[1] 王映红. 企业大规模敏捷转型探索与实践[ J] . 金融 科技时代, 2017, 25(11) : 84-85. WANG Y H. Exploration and practice of large-scale agile transformation of enterprises [ J ] . Financial Technology Time, 2017, 25(11) : 84-85.
[2] BIESIALSKA K, FRANCH X, MUNTÉS-MULERO V. Mining dependencies in large-scale agile software development projects: a quantitative industry study[C]∥Evaluation and Assessment in Software Engineering. New York:ACM, 2021: 20-29.
[3] COHN M. Agile estimating and planning [ M ] . Upper Saddle River: Prentice Hall,2005.
[4] ZAPOTECAS-MARTÍNEZ S, GARCÍA-NÁJERA A, CERVANTES H. Multi-objective optimization in the agile software project scheduling using decomposition [ C ] ∥ Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2020: 1495-1502.
[5] ROQUE L, ARAÚJO A A, DANTAS A, et al. Human Resource Allocation in Agile Software Projects Based on Task Similarities[C]∥International Symposium on Search Based Software Engineering. Cham: Springer, 2016: 291 -297.
[6] XIAO J, AO X T, TANG Y. Solving software project scheduling problems with ant colony optimization[J]. Computers & Operations Research, 2013, 40(1): 33-46.
[7] SHEN X N, GUO Y N, LI A M. Cooperative coevolution with an improved resource allocation for large-scale multiobjective software project scheduling [ J ] . Applied Soft Computing, 2020, 88: 106059.
[8] PADBERG F, WEISS D. Optimal scheduling of software projects using reinforcement learning[ C]∥2011 18th Asia-Pacific Software Engineering Conference. Piscataway: IEEE, 2012: 9-16.
[9] LIU W T, SU S, TANG T, et al. A DQN-based intelligent control method for heavy haul trains on long steep downhill section[ J] . Transportation Research Part C: Emerging Technologies, 2021, 129: 103249.
[10] HUYNH T N, DO D T T, LEE J. Q-Learning-based parameter control in differential evolution for structural optimization[J]. Applied Soft Computing, 2021, 107: 107464.
[11] LUO S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning [ J ] . Applied Soft Computing, 2020, 91: 106208.
[12] LI Y X, GU W B, YUAN M H, et al. Real-time datadriven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network[ J] . Robotics and Computer-Integrated Manufacturing, 2022, 74: 102283.
[13] Van HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-Learning [ C]∥Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. New York: ACM, 2016: 2094-2100.
[14] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB / OL]. ( 2016- 02- 25) [ 2023- 02-09]. https:∥arxiv. org / abs/ 1511. 05952.
[15] 王培崇, 尹欣洁, 李丽荣. 一种具有学习机制的海鸥 优化算 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2022, 43 (6) : 8-14.
WANG P C, YIN X J, LI L R. An improved seagull optimization algorithm with learning[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(6): 8-14.