[1]王要强,杨志伟,王 义,等.计及噪声和模型参数不确定的发电机动态状态估计[J].郑州大学学报(工学版),2023,44(06):68-75.[doi:10.13705/j.issn.1671-6833.2023.06.006]
 WANG Yaoqiang,YANG Zhiwei,WANG Yi,et al.Dynamic State Estimation of Generators Considering Noise and Model Parameter Uncertainties[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):68-75.[doi:10.13705/j.issn.1671-6833.2023.06.006]
点击复制

计及噪声和模型参数不确定的发电机动态状态估计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年06期
页码:
68-75
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Dynamic State Estimation of Generators Considering Noise and Model Parameter Uncertainties
作者:
王要强12 杨志伟12 王 义12 王克文12 梁 军13
1. 郑州大学 电气与信息工程学院,河南 郑州 450001;2. 郑州大学 河南省电力电子与电力系统工程技术研究中 心,河南 郑州 450001;3. 卡迪夫大学,英国 卡迪夫 CF243AA
Author(s):
WANG Yaoqiang12 YANG Zhiwei12 WANG Yi1 WANG Kewen12 LIANG Jun13
1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Henan Engineering Research Center of Power Electronics and Energy Systems, Zhengzhou University, Zhengzhou 450001, China; 3. Cardiff University, Cardiff CF243AA, U. K
关键词:
发电机 动态状态估计 H ∞ 滤波 非线性滤波 粒子滤波 模型不确定性 非高斯噪声
Keywords:
generator dynamic state estimation H-infinity filter nonlinear filter particle filter model uncertainty non-Gaussian nois
分类号:
TM711
DOI:
10.13705/j.issn.1671-6833.2023.06.006
文献标志码:
A
摘要:
针对发电机动态状态估计过程中通信噪声以及模型参数不确定时估计精度降低和鲁棒性差的缺陷,提出 了一种具有鲁棒性的发电机动态状态估计方法———H ∞ 无迹粒子滤波( HUPF) 。 首先,建立四阶发电机的状态空间 模型,利用无迹变换法计算粒子滤波的重要密度分布,提高了滤波精度和计算效率,增加了算法的灵活性;其次,根 据 H ∞ 滤波理论建立发电机模型不确定性的边界约束准则,并在此基础上结合无迹粒子滤波( UPF) ,设计了一种可 以根据模型不确定性动态调整估计误差协方差的更新策略,进一步提升了发电机的估计精度和抗差性能。 通过 IEEE 39 节点系统中的仿真算例验证了所提方法的有效性,测试结果表明:所提 HUPF 方法的均方根误差最低为 0. 006,最高为 0. 045 8,相比于 UKF、UPF 和 AUKF 方法,HUPF 方法的均方根误差最小,能够显著提高模型不确定 情形下发电机的状态估计精度,并且具有更强的鲁棒性。
Abstract:
In view of the defects of accuracy and robustness caused by the uncertainty of noise and model parameters in the process of generator dynamic state estimation, a robust dynamic state estimation method for generators—H-infinity unscented particle filter (HUPF) was proposed. Firstly, a fourth-order dynamic state space model of generator was established. Secondly, the uncertainty constraint criterion of model was constructed based on the H-infinity theory to define the uncertainty boundary range. By effectively combining robust control theory and particle filtering, and using unscented transformation to calculate the important density function, the particle swarm would be closer to the actual posterior probability distribution. Finally, a novel estimation error covariance update strategy was designed, which could be dynamically adjusted based on model uncertainty. In IEEE 39-bus system, the effectiveness of the proposed method was verified. The simulation results demonstrated that the minimum root mean square error (RMSE) of the proposed HUPF method was 0.006 and the maximum was 0.045 8. Compared with UKF, UPF, and AUKF methods, the HUPF method had the smallest RMSE and could significantly improve the state estimation accuracy of the generator with model uncertainty and stronger robustness.

参考文献/References:

[1] 侯栋宸, 季嘉泓, 王建喜, 等. 基于伪量测自适应插 值策略 的 发 电 机 动 态 状 态 估 计 [ J] . 高 电 压 技 术, 2021, 47(7) : 2359-2366.

 HOU D C, JI J H, WANG J X, et al. Dynamic state estimation for synchronous machines based on pseudo measurement adaptive interpolation strategy[ J] . High Voltage Engineering, 2021, 47(7) : 2359-2366.
 [2] 巫春玲, 郑克军, 徐先峰, 等. 基于自适应插值强跟 踪扩展 卡 尔 曼 滤 波 的 电 力 系 统 动 态 状 态 估 计 研 究 [ J] . 电网技术, 2023, 47(5) : 2078-2088. 
WU C L, ZHENG K J, XU X F, et al. Dynamic state estimation of power system based on adaptive interpolation strong tracking extended Kalman filter[ J] . Power System Technology, 2023, 47(5) : 2078-2088. 
[3] 卢庆春, 张俊, 许沛东, 等. 考虑量测相关性的容积 卡尔曼滤波动态状态估计[ J] . 电测与仪表, 2022, 59 (10) : 161-167, 200. 
LU Q C, ZHANG J, XU P D, et al. Dynamic state estimation of power system based on cubature Kalman filter considering measurement correlation [ J ] . Electrical Measurement & Instrumentation, 2022, 59 ( 10) : 161 - 167, 200.
 [4] 朱茂林, 刘灏, 毕天姝, 等. 考虑输入量不良数据的 发电机 动 态 状 态 估 计 方 法 [ J] . 电 力 系 统 自 动 化, 2022, 46(7) : 94-103. 
ZHU M L, LIU H, BI T S, et al. Dynamic state estimation method for generators considering bad data in input [ J] . Automation of Electric Power Systems, 2022, 46 (7) : 94-103.
 [5] 张晓兰, 谷永刚, 张少强, 等. 智能监测系统下的线 性电网 状 态 估 计 研 究 [ J ] . 电 测 与 仪 表, 2021, 58 (10) : 112-117. 
ZHANG X L, GU Y G, ZHANG S Q, et al. Research on state estimation of linear grid based on intelligent monitoring system[ J] . Electrical Measurement & Instrumentation, 2021, 58(10) : 112-117. 
[6] LIU Y, SINGH A K, ZHAO J B, et al. Dynamic state estimation for power system control and protection [ J ] . IEEE Transactions on Power Systems, 2021, 36 ( 6 ) : 5909-5921.
 [7] 秦晓辉, 毕天姝, 杨奇逊. 基于 WAMS 的电力系统机 电暂态过程动态状态估计[ J] . 中国电机工程学报, 2008, 28(7) : 19-25. 
QIN X H, BI T S, YANG Q X. Dynamic state estimator based on WAMS during power system transient process [ J] . Proceedings of the CSEE, 2008, 28(7) : 19-25.
 [8] 王大方, 李琪, 张鹏, 等. 带有相电压补偿基于 EKF 的无传感器感应电机转速估计[ J] . 电机与控制学报, 2019, 23(1) : 35-44. 
WANG D F, LI Q, ZHANG P, et al. Speed estimation method based on extended Kalman filter with phase voltage compensation for sensorless ACIM drives [ J] . Electric Machines and Control, 2019, 23(1) : 35-44. 
[9] ZHAO J B, MILI L, GÓMEZ-EXPÓSITO A. Constrained robust unscented Kalman filter for generalized dynamic state estimation [ J] . IEEE Transactions on Power Systems, 2019, 34(5) : 3637-3646.
 [10] WANG Y Q, YANG Z W, WANG Y, et al. Robust dynamic state estimation for power system based on adaptive cubature Kalman filter with generalized correntropy loss [ J] . IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11.
 [11] ZHAO J B, MILI L. Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics [ J] . IEEE Transactions on Smart Grid, 2019, 10(2) : 1215-1224. 
[12] 王彤, 高明阳, 黄世楼, 等. 基于自适应容积卡尔曼 滤波的双馈风力发电机动态状态估计[ J] . 电网技术, 2021, 45(5) : 1837-1843, 14. 
WANG T, GAO M Y, HUANG S L, et al. Dynamic state estimation for doubly fed induction generator wind turbine based on adaptive cubature Kalman filter[ J] . Power System Technology, 2021, 45(5) : 1837-1843, 14.
 [13] 张琪, 张志利, 李天梅, 等. 一种摄动粒子滤波故障 检测方法[ J] . 电机与控制学报, 2017, 21(11) : 107- 113. 
ZHANG Q, ZHANG Z L, LI T M, et al. A particle filter with perturbation for fault detection [ J ] . Electric Machines and Control, 2017, 21(11) : 107-113.
 [14] YU S S, GUO J H, CHAU T K, et al. An unscented particle filtering approach to decentralized dynamic state estimation for DFIG wind turbines in multi-area power systems [ J ] . IEEE Transactions on Power Systems, 2020, 35(4) : 2670-2682. 
[15] 王义, 孙永辉, 钟永洁, 等. 计及模型不确定性的发 电机动态状态估计方法[ J] . 电力系统自动化, 2018, 42(21) :77-83. 
WANG Y, SUN Y H, ZHONG Y J, et al. Dynamic state estimation method for generators considering model uncertainties [ J ] . Automation of Electric Power Systems, 2018, 42(21) :77-83.[16] YANG J, ZHANG W A, GUO F H. Dynamic state estimation for power networks by distributed unscented information filter [ J ] . IEEE Transactions on Smart Grid, 2020, 11(3) : 2162-2171. 
[17] NUGROHO S A, TAHA A F, QI J J. Robust dynamic state estimation of synchronous machines with asymptotic state estimation error performance guarantees [ J] . IEEE Transactions on Power Systems, 2020, 35 ( 3 ) : 1923 -1935.
 [18] 王义, 孙永辉, 南东亮, 等. 考虑参数不确定性影响 的发电机动态状态估计方法[ J] . 电力系统自动化, 2020, 44(4) : 110-118. 
WANG Y, SUN Y H, NAN D L, et al. Dynamic state estimation method of generator considering the influence of parameter uncertainty[ J] . Automation of Electric Power Systems, 2020, 44(4) : 110-118. 
[19] 李扬, 李智, 陈亮, 等. 发电机动态状态估计中的一 种虚假数据注入攻击方法[ J] . 电工技术学报, 2020, 35(7) : 1476-1488. 
LI Y, LI Z, CHEN L, et al. A false data injection attack method for generator dynamic state estimation[ J] . Transactions of China Electrotechnical Society, 2020, 35( 7) : 1476-1488.
 [20] MASOUMNEZHAD M, TEHRANI M, AKOUSHIDEH A, et al. A new adaptive fuzzy hybrid unscented Kalman / H-infinity filter for state estimating dynamical systems [ J] . IET Signal Processing, 2021, 15(7) : 459-466.
 [21] ZHANG S Z, GUO X, ZHANG X W. An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery [ J ] . Journal of Energy Storage, 2020, 32: 101980.
 [22] 夏添梁, 张玉敏, 杨明, 等. 联合长短期记忆神经网 络和粒子滤波的配电网预测辅助鲁棒状态估计方法 [ J] . 高电压技术, 2022, 48(4) : 1343-1355. 
XIA T L, ZHANG Y M, YANG M, et al. Robust forecasting-aided state estimation method of distribution network based on long-short term memory neural network and particle filter [ J] . High Voltage Engineering, 2022, 48 (4) : 1343-1355.

相似文献/References:

[1]胡一德.一种性能完善的发电机相间短路保护的分析[J].郑州大学学报(工学版),1989,10(02):89.
 [J].Journal of Zhengzhou University (Engineering Science),1989,10(06):89.

更新日期/Last Update: 2023-10-22