[1]张文煜,马可可,郭振海,等.基于灰狼算法和极限学习机的风速多步预测[J].郑州大学学报(工学版),2024,45(02):89-96.[doi:10.13705/j.issn.1671-6833.2026.05.008]
 ZHANG Wenyu,MA Keke,GUO Zhenhai,et al.Multistep Prediction of Wind Speed Based on Grey Wolf Algorithm and Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):89-96.[doi:10.13705/j.issn.1671-6833.2026.05.008]
点击复制

基于灰狼算法和极限学习机的风速多步预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年02期
页码:
89-96
栏目:
出版日期:
2024-03-06

文章信息/Info

Title:
Multistep Prediction of Wind Speed Based on Grey Wolf Algorithm and Extreme Learning Machine
作者:
张文煜 马可可 郭振海 赵 晶 邱文智
1. 郑州大学 地球科学与技术学院,河南 郑州 450001;2. 郑州大学 计算机与人工智能学院,河南 郑州 450001; 3. 中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
Author(s):
ZHANG Wenyu MA Keke GUO Zhenhai ZHAO Jing QIU Wenzhi
1. School of Earth Sciences and Technology, Zhengzhou University, Zhengzhou 450001, China; 2. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; 3. State Key Laboratory of Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
关键词:
风速预测 多步预测 信号分解 特征选择 灰狼优化算法 极限学习机
Keywords:
wind speed prediction multi-step prediction signal decomposition selection of features grey wolf optimization extreme learning machine
DOI:
10.13705/j.issn.1671-6833.2026.05.008
文献标志码:
A
摘要:
为了提高风速的多步预测水平,提出了一种基于数据信号分解和灰狼算法优化极限学习机的混合预测模 型。 首先,使用具有自适应噪声的完全集成经验模态分解算法将原始风速时间序列分解为若干本征模态函数和一 个残差序列,并使用偏自相关函数法对模型输入进行特征选择;其次,在分解子序列上分别建立模型并进行预测, 构造多输入多输出策略的极限学习机神经网络,使用灰狼优化算法求解其中的最优化隐含层权值和偏置;最后,对 子序列进行重构并得到最终的预测结果。 使用时间分辨率为 15 min 的多组实测资料开展模拟实验,所提模型在 3 个风电场的均方根误差分别为 0. 859、0. 925、0. 927 m / s,均低于其他对比模型,验证了该模型在未来 4 h 风速预 测即 16 步预测中的有效性。
Abstract:
In order to improve the multi-step prediction of wind speed, a hybrid prediction model based on data signal decomposition and grey wolf optimization algorithm was proposed to optimize extreme learning machine. Firstly, the original wind speed time series was decomposed into several intrinsic mode functions and a residual sequence using the complete ensemble empirical mode decomposition with adaptive noise, and the partial autocorrelation function model input. Then, the model was built and the prediction was made on the decomposition subsequence. An extreme learning machine neural network with multi-input-multi-output strategy was constructed, and grey wolf algorithm was used to solve the weight and bias of the optimal hidden layer. Finally, the subsequence was reconstructed and the final prediction result was obtained. Simulation experiments were conducted using multiple sets of measured data with a time resolution of 15 minutes. The root mean square errors of the proposed model in the three wind farms were 0.859, 0.925, and 0.927, respectively, which were lower than other comparative models, verifying the effectiveness of the model in predicting wind speed in the next four hours,i.e. 16 steps prediction.

参考文献/References:

[1] ZHAO W G, WEI Y M, SU Z Y. One day ahead wind speed forecasting: a resampling-based approach[J]. Applied Energy, 2016, 178: 886-901.

[2] XU Y Y, YANG G K, LUO J L, et al. A multi-location short-term wind speed prediction model based on spatiotemporal joint learning[J]. Renewable Energy, 2022, 183: 148-159.
[3] XU W F, LIU P, CHENG L, et al. Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable Energy, 2021, 163: 772-782.
[4] WANG Y, ZOU R M, LIU F, et al. A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304: 117766.
[5] CHEN G G, LI L J, ZHANG Z Z, et al. Short-term wind speed forecasting with principle-subordinate predictor based on Conv-LSTM and improved BPNN[J]. IEEE Access, 2020, 8: 67955-67973.
[6] LIU D, WANG J L, WANG H. Short-term wind speed forecasting based on spectral clustering and optimised echo state networks[J]. Renewable Energy, 2015, 78: 599-608.
[7] ZHAO X Y, JIANG N, LIU J F, et al. Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework[J]. Energy Conversion and Management, 2020, 203:112239.
[8] HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[9] 朱抗, 杨洪明, 孟科. 基于极限学习机的短期风力发电预测[J]. 电力科学与技术学报, 2019, 34(2): 106-111.
ZHU K, YANG H M, MENG K. Short-term wind power forecast using extreme learning machine[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 106-111.
[10] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(增刊1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[12] FARIS H, ALJARAH I, AL-BETAR M A, et al. Grey wolf optimizer: a review of recent variants and applications[J]. Neural Computing and Applications, 2018, 30(2): 413-435.
[13] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[EB/OL].(1998-03-08)[2023-02-16].https:∥doi.org/10.1098/rspa.1998.0193 .
[14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[15] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]∥2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE, 2011: 4144-4147.
[16] 韩宏志, 唐振浩. 基于CEEMDAN与回声状态网络的风速预测方法[J]. 电力系统保护与控制, 2020, 48(12): 90-96.
HAN H Z, TANG Z H. Wind speed prediction method based on CEEMDAN and echo state network[J]. Power System Protection and Control, 2020, 48(12): 90-96.
[17] REN Y, SUGANTHAN P N, SRIKANTH N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 236-244.
[18] 舒畅, 金潇, 李自品, 等. 基于CEEMDAN的配电变压器放电故障噪声诊断方法[J]. 高电压技术, 2018, 44(8): 2603-2611.
SHU C, JIN X, LI Z P, et al. Noise diagnosis method of distribution transformer discharge fault based on CEEMDAN[J]. High Voltage Engineering, 2018, 44(8): 2603-2611.
[19] WANG H F, XIU C B, LI Y Q, et al. Hysteretic neural network and its application in the prediction of the wind speed series[C]∥The 26th Chinese Control and Decision Conference (2014 CCDC).Piscataway: IEEE, 2014: 762-765.
[20] SUN S Z, FU J Q, LI A. A compound wind power forecasting strategy based on clustering, two-stage decomposition, parameter optimization, and optimal combination of multiple machine learning approaches[J]. Energies, 2019, 12(18): 3586.
[21] WANG J J, ZHANG W Y, LI Y N, et al. Forecasting wind speed using empirical mode decomposition and Elman neural network[J]. Applied Soft Computing, 2014, 23: 452-459.
[22] 董雪, 赵宏伟, 赵生校, 等. 基于二次分解和多目标优化的超短期海上风电功率预测[J]. 高电压技术, 2022, 48(8): 3260-3270.
DONG X, ZHAO H W, ZHAO S X, et al. Ultra-short-term offshore wind power forecasting based on secondary decomposition and multi-objective optimization[J]. High Voltage Engineering, 2022, 48(8): 3260-3270.
[23] HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116.
[24] BAI S J, KOLTER J Z, KOLTUN V. Trellis networks for sequence modeling[EB/OL]. (2018-10-15)[2023-02-16]. https:∥arxiv.org/abs/1810.06682.

更新日期/Last Update: 2024-03-08