[2] 欧阳海滨 , 全永彬 , 高立群 , 等 . 基于混合遗传粒子群优化算法的层次路径规划方法 [J]. 郑州大学学报 ( 工学版 ), 2020, 41(4): 34-40.OUYANG H B, QUAN Y B, GAO L Q, et al. Hierarchical path planning method for mobile robots based on hybrid genetic particle swarm optimization algorithm [ J].Journal of Zhengzhou University (Engineering Science),2020, 41(4): 34-40.
[3] 裴以建 , 杨超杰 , 杨亮亮 . 基于改进 RRT ∗ 的移动机 62 郑 州 大 学 学 报 (工 学 版) 2024 年器人路径规划算法[J]. 计算机工程, 2019, 45(5):285-290, 297.PEI Y J, YANG C J, YANG L L. Path planning algorithm for mobile robot based on improved RRT ∗ [ J]. Computer Engineering, 2019, 45(5): 285-290, 297.
[4] 姚正华 , 任子晖 , 陈艳娜 . 基于人工鱼群算法的煤矿救援机器人路径规划 [J]. 煤矿机械 , 2014, 35(4):59-61.YAO Z H, REN Z H, CHEN Y N. Path planning formine rescue robot based on AFSA[ J]. Coal Mine Machinery,2014, 35(4): 59-61.
[5] 李晓磊 . 一种新型的智能优化方法 - 人工鱼群算法 [D]. 杭州 : 浙江大学 , 2003.LI X L. A new intelligent optimization method-artificialfish school algorithm[D]. Hangzhou: Zhejiang University,2003.
[6] 聂黎明 , 周永权 . 基于人工鱼群算法的机器人路径规划 [J]. 计算机工程与应用 , 2008, 44(32): 48-50, 63.NIE L M, ZHOU Y Q. Path planning of robot based on artificial fish-swarm algorithm[J]. Computer Engineering and Applications, 2008, 44(32): 48-50, 63.
[7] 张文辉 , 林子安 , 刘彤 , 等 . 基于改进人工鱼群算法的机器人路径规划 [J]. 计算机仿真 , 2016, 33(12):374-379, 448.ZHANG W H, LIN Z A, LIU T, et al. Robot path planning method based on modified artificial fish swarm algorithm [J]. Computer Simulation, 2016, 33(12): 374-379, 448.
[8] 黄宜庆 , 彭凯 , 袁梦茹 . 基于多策略混合人工鱼群算法的移动机器人路径规划 [J]. 信息与控制 , 2017, 46(3): 283-288.HUANG Y Q, PENG K, YUAN M R. Path planning for mobile robots based on multi-strategy hybrid artificial fish swarm algorithm[J]. Information and Control, 2017, 46(3): 283-288.
[9] 梁雪慧 , 赵嘉祺 . 人工鱼群与遗传混合算法在无人艇路径规划中的应用 [J]. 计算机工程与科学 , 2019, 41(5): 942-947.LIANG X H, ZHAO J Q. A hybrid algorithm of artificial fish swarm and genetic algorithm and its application in collision avoidance of unmanned surface vessels[J]. Computer Engineering & Science, 2019, 41(5): 942-947.
[10] 罗如学, 陈妙娜, 林继灿. 基于改进人工鱼群算法的机器人路径规划[ J]. 科学技术与工程, 2020, 20(23): 9445-9449.LUO R X, CHEN M N, LIN J C. Robot path planning based on improved artificial fish swarm algorithm [ J].Science Technology and Engineering, 2020, 20 ( 23):9445-9449.
[11] 胡致远, 王征, 杨洋, 等. 基于人工鱼群-蚁群算法的UUV 三维全局路径规划[ J]. 兵工学报, 2022, 43(7): 1676-1684.HU Z Y, WANG Z, YANG Y, et al. Three-dimensional global path planning for UUV based on artificial fish swarm and ant colony algorithm[J]. Acta Armamentarii,2022, 43(7): 1676-1684.
[12] LI F F, DU Y, JIA K J. Path planning and smoothing of mobile robot based on improved artificial fish swarm algorithm[J]. Scientific Reports, 2022, 12: 659.
[13] LI G Q, LIANG D W, ZHAO Q Y, et al. Improved artificial fish swarm algorithm approach to robot path planning problems[C]∥2020 5th International Conference on Automation, Control and Robotics Engineering ( CACRE). Piscataway: IEEE, 2020: 71-75.
[14] WANG F, ZHAO L, BAI Y. Path planning for unmanned surface vehicles based on modified artificial fish swarm algorithm with local optimizer [ J]. Mathematical Problems in Engineering, 2022, 2022: 1283374.
[15] QI B L, XIONG L Y, WANG L J, et al. A weights and improved adaptive artificial fish swarm algorithm for path planning[C]∥2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Piscataway: IEEE, 2019: 1698-1702.
[16] 玄世龙, 许志远, 孙帅, 等. 基于禁忌搜索算法的无人船路径规划[J]. 船舶工程, 2022, 44(4): 8-13, 37.XUAN S L, XU Z Y, SUN S, et al. Path planning of unmanned ship based on the tabu search algorithm[J]. Ship Engineering, 2022, 44(4): 8-13, 37.
[17] 赵江, 王晓博, 郝崇清, 等. 栅格图特征提取下的路径规划建模与应用[J]. 计算机工程与应用, 2020, 56(10): 254-260.ZHAO J, WANG X B, HAO C Q, et al. Path planning modeling and application based on feature extraction of grid graph[J]. Computer Engineering and Applications, 2020, 56(10): 254-260.
[18] 樊征, 曹其新, 杨扬, 等. 面向移动机器人的拓扑地图自动生成[J]. 华中科技大学学报(自然科学版),2008, 36(增刊1): 163-166.FAN Z, CAO Q X, YANG Y, et al. Automatically generationof topological map for mobile robot[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2008, 36(S1): 163-166.
[19] 张三川, 明珠. 基于主动安全的改进人工势场局部路径规划研究[J]. 郑州大学学报(工学版), 2021, 42(5): 32-36, 55.ZHANG S C, MING Z. Research on improved local path planning of artificial potential field based on active safety[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 32-36, 55.
[20] YOON S, YOON S E, LEE U, et al. Recursive path planning using reduced states for car-like vehicles on grid maps[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2797-2813.
[21] 朱晓东, 姜晓东, 曾庆山, 等. 一种仿生机器人的夹爪: CN113799164A[P]. 2021-12-17.ZHU X D, JIANG X D, ZENG Q S, et al. Clamping jaw of bionic robot: CN113799164A[P]. 2021-12-17.
[22] 朱晓东, 姜晓东, 曾庆山, 等. 一种机器人伸缩摆动机构及仿生机器人: CN114851245A[P]. 2022-08-05.ZHU X D, JIANG X D, ZENG Q S, et al. Robot telescopic swing mechanism and bionic robot: CN114851245A[P]. 2022-08-05.
[23] 彭金柱, 张建新, 曾庆山. 基于改进差分进化的3-RPS 机器人逆运动学参数标定[J]. 郑州大学学报(工学版), 2022, 43(5): 1-7, 38.PENG J Z, ZHANG J X, ZENG Q S. Inverse kinematic parameters calibration of 3-RPS parallel robot based on modified differential evolution[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(5): 1-7, 38.
[24] MIAO C W, CHEN G Z, YAN C L, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[ J]. Computers & Industrial Engineering, 2021, 156: 107230.
[25] NAGAOKA K, MINOTE H, MARUYA K, et al. Passive spine gripper for free-climbing robot in extreme terrain [J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1765-1770.
[26] 张蓝天, 王光霞, 刘旭, 等. 机器人栅格地图编码与索引方法[J]. 测绘工程, 2022, 31(3): 23-30.ZHANG L T, WANG G X, LIU X, et al. Coding and indexing method of robot grid maps [ J]. Engineering ofSurveying and Mapping, 2022, 31(3): 23-30.
[27] LI X Y, GAO L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J ]. International Journal of Production Economics, 2016, 174: 93-110.
[28] ZHANG D Y, FU P. Robot path planning by generalized ant colony algorithm[J]. Applied Mechanics and Materials, 2014, 494-495: 1229-1232.