[1] 薛均晓, 黄世博, 王亚博, 等. 基于时空特征的语音情感识别模型TSTNet[J]. 郑州大学学报(工学版), 2021, 42(6): 28-33.XUE J X, HUANG S B, WANG Y B, et al. Speech emotion recognition TSTNet based on spatial-temporal features[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(6): 28-33.[2] LOUVAN S, MAGNINI B. Recent neural methods on slot filling and intent classification for task-oriented dialogue systems: a survey[C]∥Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain: ICCI, 2020: 480-496.
[3] WELD H, HUANG X Q, LONG S Q, et al. A survey of joint intent detection and slot filling models in natural language understanding[J]. ACM Computing Surveys, 2022, 55(8): 1-38.
[4] TUR G, DE MORI R. Spoken language understanding: systems for extracting semantic information from speech[D]. New York: John Wiley and Sons, 2011.
[5] BHARGAVA A, CELIKYILMAZ A, HAKKANI-TÜR D, et al. Easy contextual intent prediction and slot detection[C]∥International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 8337-8341.
[6] MESNIL G, DAUPHIN Y, YAO K S, et al. Using recurrent neural networks for slot filling in spoken language understanding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3): 530-539.
[7] LIN Z H, FENG M W, DOS SANTOS C N, et al. A structured self-attentive sentence embedding[EB/OL]. (2017-03-09)[2023-08-09]. http:∥export.arxiv.org/abs/1703.03130.
[8] KIM Y. Convolutional neural networks for sentence classification[EB/OL]. (2014-09-03)[2023-08-09]. https:∥arxiv.org/abs/1408.5882.
[9] ZHAO W, YE J B, YANG M, et al. Investigating capsule networks with dynamic routing for text classification[EB/OL]. (2018-09-03)[2023-08-09]. https:∥arxiv.org/abs/1804.00538.
[10] ZHANG X D, WANG H F. A joint model of intent determination and slot filling for spoken language understan-ding[C]∥Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 2993-2999.
[11] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2023-08-09]. https:∥arxiv.org/abs/1412.3555.
[12] LIU B, LANE I. Joint online spoken language understanding and language modeling with recurrent neural networks[EB/OL]. (2016-09-06)[2023-08-09]. https:∥arxiv.org/abs/1609.01462.
[13] LIU B, LANE I. Attention-based recurrent neural network models for joint intent detection and slot filling[EB/OL]. (2016-09-06)[2023-08-09]. https:∥arxiv.org/abs/1609.01454.
[14] GOO C W, GAO G, HSU Y K. Slot-gated modeling for joint slot filling and intent prediction[C]∥ The 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Haven: ACL, 2018:753-757.
[15] QIN L B, CHE W X, LI Y M, et al. A stack-propagation framework with token-level intent detection for spoken language understanding[EB/OL]. (2019-09-05)[2023-08-09]. https:∥arxiv.org/abs/1909.02188.
[16] CHEN M Y, ZENG J, LOU J. A self-attention joint mo-del for spoken language understanding in situational dialog applications[EB/OL]. (2019-05-27)[2023-08-09]. https:∥arxiv.org/abs/1905.11393.
[17] WANG Y, SHEN Y L, JIN H X. A Bi-model based RNN semantic frame parsing model for intent detection and slot filling[EB/OL]. (2018-12-26)[2023-08-09]. https:∥arxiv.org/abs/1812.10235.
[18] CHEN Q, ZHUO Z, WANG W. BERT for joint intent classification and slot filling[EB/OL]. (2019-02-28)[2023-08-09]. https:∥arxiv.org/abs/1902.10909.
[19] QIN L B, LI Z Y, CHE W X, et al. Co-GAT: a co-interactive graph attention network for joint dialog act recognition and sentiment classification[EB/OL].(2020-12-24)[2023-08-09].https:∥arxiv.org/abs/2012.13260.
[20] LI F F, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 594-611.
[21] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]∥ International Conference on Machine Learning. Piscataway: IEEE, 2015: 1-30.
[22] ZHANG X T, QIANG Y T, SUNG F, et al. RelationNet2: deep comparison columns for few-shot learning[EB/OL]. (2018-11-17)[2023-08-09]. https:∥arxiv.org/abs/1811.07100.
[23] CHEN J F, ZHANG R C, MAO Y Y, et al. ContrastNet: a contrastive learning framework for few-shot text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10492-10500.
[24] JIAN Y R, TORRESANI L. Label hallucination for few-shot classification[EB/OL]. (2021-12-06)[2023-08-09].https:∥arxiv.org/abs/2112.03340.
[25] DAI A M, LE Q V. Semi-supervised sequence learning[EB/OL]. (2015-11-04)[2023-08-09]. https:∥arxiv.org/abs/1511.01432.
[26] HOWARD J, RUDER S. Universal language model fine-tuning for text classification[EB/OL]. (2018-05-23)[2023-08-09]. https:∥arxiv.org/abs/1801.06146.
[27] SUN C, QIU X P, XU Y G, et al. How to fine-tune BERT for text classification? [J]. Lecture Notes in Computer Science, 2019, 11856: 194-206.
[28] MOHAMMADI S, CHAPON M. Investigating the performance of fine-tuned text classification models based-on Bert[C]∥2020 IEEE 22nd International Conference on High Performance Computing and Communications. Piscataway: IEEE, 2020: 1252-1257.
[29] ZHANG H D, ZHANG Y W, ZHAN L M, et al. Effectiveness of pre-training for few-shot intent classification[EB/OL]. (2021-09-13)[2023-08-09]. https:∥arxiv.org/abs/2109.05782.
[30] ZHANG H D, LIANG H W, ZHANG Y W, et al. Fine-tuning pre-trained language models for few-shot intent detection: supervised pre-training and isotropization[EB/OL]. (2022-05-26)[2023-08-09]. https:∥arxiv.org/abs/2205.07208.
[31] KURATA G, XIANG B, ZHOU B W, et al. Labeled data generation with encoder-decoder LSTM for semantic slot filling[C]∥17th Annual Conference of the International Speech Communication Association. San Francisco: ISCA, 2016: 725-729.
[32] HOU Y T, LIU Y J, CHE W X, et al. Sequence-to-sequence data augmentation for dialogue language understanding[EB/OL]. (2018-06-04)[2023-08-09]. https:∥arxiv.org/abs/1807.01554.
[33] KIM H Y, ROH Y H, KIM Y K. Data augmentation by data noising for open-vocabulary slots in spoken language understanding[C]∥ The 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019). New Haven: ACL, 2019: 97-102.
[34] ZHAO Z J, ZHU S, YU K. Data augmentation with atomic templates for spoken language understanding[EB/OL]. (2019-08-28)[2023-08-09]. https:∥arxiv.org/abs/1908.10770.
[35] PENG B L, ZHU C G, ZENG M, et al. Data augmentation for spoken language understanding via pretrained language models[EB/OL]. (2021-03-11)[2023-08-09]. https:∥arxiv.org/abs/2004.13952.
[36] QIN L B, NI M H, ZHANG Y, et al. CoSDA-ML: multi-lingual code-switching data augmentation for zero-shot cross-lingual NLP[EB/OL]. (2020-07-13)[2023-08-09]. https:∥arxiv.org/abs/2006.06402.
[37] SAHU G, RODRIGUEZ P, LARADJI I H, et al. Data augmentation for intent classification with off-the-shelf large language models[EB/OL]. (2022-04-05)[2023-08-09]. https:∥arxiv.org/abs/2204.01959v1.
[38] LIN Y T, PAPANGELIS A, KIM S, et al. Selective in-context data augmentation for intent detection using pointwise V-information[EB/OL]. (2023-02-10)[2023-08-09]. https:∥arxiv.org/abs/2302.05096v1.
[39] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[EB/OL]. (2017-06-19)[2023-08-09]. https:∥arxiv.org/abs/1703.05175.
[40] HOU Y T, MAO J F, LAI Y K, et al. FewJoint: a few-shot learning benchmark for joint language understanding[EB/OL]. (2020-12-13)[2023-08-09]. https:∥arxiv.org/abs/2009.08138.
[41] XU W Y, ZHOU P L, YOU C Y, et al. Semantic transportation prototypical network for few-shot intent detection[C]∥Interspeech 2021. Brno, Czechia: ISCA, 2021: 251-255.
[42] DOPIERRE T, GRAVIER C, LOGERAIS W. PROTAUGMENT: unsupervised diverse short-texts paraphrasing for intent detection meta-learning[EB/OL]. (2021-05-27)[2023-08-09].https:∥arxiv.org/abs/2105.12995.
[43] YANG F Y, ZHOU X, WANG Y, et al. Diversity features enhanced prototypical network for few-shot intent detection[C]∥ International Joint Conference on Artificial Intelligence. Vienna, Austria: IJCAI, 2022: 4447-4453.
[44] GENG R Y, LI B H, LI Y B, et al. Induction networks for few-shot text classification[EB/OL]. (2019-09-29)[2023-08-09]. https:∥arxiv.org/abs/1902.10482.
[45] GENG R Y, LI B H, LI Y B, et al. Dynamic memory induction networks for few-shot text classification[EB/OL]. (2020-05-12)[2023-08-09]. https:∥arxiv.org/abs/2005.05727.
[46] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[EB/OL]. (2017-12-29)[2023-08-09]. https:∥arxiv.org/abs/1606.04080.
[47] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208.
[48] SUN Y, WANG S H, FENG S K, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. (2021-07-05)[2023-08-09]. https:∥arxiv.org/abs/2107.02137.
[49] ZHANG J G, HASHIMOTO K, WAN Y, et al. Are pre-trained transformers robust in intent classification? a mis-sing ingredient in evaluation of out-of-scope intent detection[EB/OL]. (2022-04-07)[2023-08-09].https:∥arxiv.org/abs/2106.04564.
[50] BHATHIYA H S, THAYASIVAM U. Meta learning for few-shot joint intent detection and slot-filling[C]∥ICMLT 2020: 2020 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 86-92.
[51] SHARMA B, MADHAVI M, ZHOU X H, et al. Exploring teacher-student learning approach for multi-lingual speech-to-intent classification[C]∥2021 IEEE Automatic Speech Recognition and Understanding Workshop. Pisca-taway: IEEE, 2022: 419-426.