[1] 崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习 自动驾驶 轨 迹 预 测 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(5) : 53-61. CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(5) : 53-61.
[2] BELLO S A, YU S S, WANG C, et al. Review: deep learning on 3D point clouds[ J] . Remote Sensing, 2020, 12(11) : 1729.
[3] 何雄辉, 谭杰夫, 刘哲, 等. 基于稀疏点云分割的适 应视角变化的场景识别方法[ J] . 计算机科学, 2023, 50(1) : 87-97.
HE X H, TAN J F, LIU Z, et al. Viewpoint-tolerant scene recognition based on segmentation of sparse point cloud[ J] . Computer Science, 2023, 50(1) : 87-97.
[4] GUO Y L, WANG H Y, HU Q Y, et al. Deep learning for 3D point clouds: a survey[ J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (12) : 4338-4364.
[5] 王文曦, 李乐林. 深度学习在点云分类中的研究综述 [ J] . 计算机工程与应用, 2022, 58(1) : 26-40.
WANG W X, LI L L. Review of deep learning in point cloud classification [ J] . Computer Engineering and Applications, 2022, 58(1) : 26-40.
[6] QI C R, SU H, M K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation [ C] ∥ Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway: IEEE, 2017: 652 -660.
[7] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[ C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114.
[8] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[ J] . ACM Transactions on Graphics, 2019,38(5) : 1-12.
[9] LI G H, MÜLLER M, THABET A, et al. DeepGCNs: can GCNs go as deep as CNNs? [ C]∥2019 IEEE / CVF International Conference on Computer Vision ( ICCV) . Piscataway:IEEE, 2019: 9266-9275. [
10] 逯泽锟, 于千城, 王晓峰, 等. 基于双重注意力机制 的符号网络节点嵌入[ J] . 郑州大学学报( 工学版) , 2023, 44(2) : 68-74.
LU Z K, YU Q C, WANG X F, et al. Learning signed network node embedding via dual attention mechanism [ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(2) : 68-74.
[11] WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation [C] ∥2019 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) . Piscataway: IEEE, 2019: 10288-10297.
[12] CHEN C, FRAGONARA L Z, TSOURDOS A. GAPointNet: graph attention based point neural network for exploiting local feature of point cloud[ J] . Neurocomputing, 2021, 438: 122-132.
[13] MA X, QIN C, YOU H X, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB / OL] . ( 2022 - 02 - 15) [ 2023 - 07 - 12] . https:∥arxiv. org / abs/ 2202. 07123. pdf.
[14] CHEN M, WEI Z W, HUANG Z F, et al. Simple and deep graph convolutional networks [ C] ∥Proceedings of the 37th International Conference on Machine Learning. New York:ACM, 2020: 1725-1735.
[15] XIANG T G, ZHANG C Y, SONG Y, et al. Walk in the cloud: learning curves for point clouds shape analysis[C]∥ 2021 IEEE / CVF International Conference on Computer Vision ( ICCV) . Piscataway:IEEE, 2021: 895-904.
[16] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes [ C] ∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE, 2015: 1912-1920.
[17] UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data [ C]∥2019 IEEE / CVF International Conference on Computer Vision ( ICCV ) . Piscataway:IEEE, 2019: 1588-1597.
[18] YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections [ J ] . ACM Transactions on Graphics, 2016, 35 (6) : 1-12.
[19] TAN W K, QIN N N, MA L F, et al. Toronto-3D: a large-scale mobile LiDAR dataset for semantic segmentation of urban roadways[C]∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Piscataway: IEEE, 2020: 797-806.
[20] YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway:IEEE, 2020: 5588-5597.
[21] GOYAL A, LAW H, LIU B W, et al. Revisiting point cloud shape classification with a simple and effective baseline[EB / OL] . (2021-01-09) [ 2023-07-12] . https:∥arxiv. org / abs/ 2106. 05304. pdf.
[22] LIN M X, FERAGEN A. DiffConv: analyzing irregular point clouds with an irregular view[C]∥European Conference on Computer Vision. Cham: Springer, 2022: 380 -397.
[23] 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点 云分类分割模型[ J] . 计算机工程与应用, 2023, 59 (8) : 182-191.
LAN H, CHEN H, ZHANG P F. Point cloud classification and segmentation model based on graph convolution and 3D direction convolution[ J] . Computer Engineering and Applications, 2023, 59(8) : 182-191.
[24] 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的 点云分类分割模型[ J] . 计算机工程与应用, 2023, 59 (19) : 106-113.
SHEN L, YANG J Z, ZHOU G Q, et al. Point cloud classification segmentation model based on self-attention and edge convolution[ J] . Computer Engineering and Applications, 2023, 59(19) : 106-113.
[25] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[ J ] . Computational Visual Media, 2021, 7 (2) : 187-199.
[26] SUN J C, ZHANG Q Z, KAILKHURA B, et al. Benchmarking robustness of 3D point cloud recognition against common corruptions[ EB / OL] . ( 2022 - 01 - 28) [ 2023 - 07-12] . https:∥arxiv. org / abs/ 2201. 12296. pdf.