[1] BAO Y K, WANG W, ZOU H. SVR-based method forecasting intermittent demand for service parts invento ries[C]∥ International Workshop on Rough Sets,Fuzzy Sets,Data Mining,and Granular Computing. Cham: Springer,2005:604-613. [2] FU G Q, ZHENG Y, ZHOU L F, et al. Look-ahead prediction of spindle thermal errors with on-machine measurement and the cubic exponential smoothing unscented Kalman filtering-based temperature prediction model of the machine tools[J]. Measurement, 2023, 210: 112536.
[3] 贾茹宾, 高金峰. 基于ARIMA模型的变压器油中溶 解气体含量时间序列预测方法[J]. 郑州大学学报 (工学版), 2020, 41(2): 67-72.
JIA R B, GAO J F. Time series prediction method of dissolved gas content in transformer oil based on ARIMA model[J]. Journal of Zhengzhou University (Engineer ing Science), 2020, 41(2): 67-72.
[4] KARMY J P, MALDONADO S. Hierarchical time series forecasting via support vector regression in the European travel retail industry[J]. Expert Systems with Applica tions, 2019, 137: 59-73.
[5] VAN STEENBERGEN R M, MES M R K. Forecasting demand profiles of new products[J]. Decision Support Systems, 2020, 139: 113401.
[6] SUENAGA D, TAKASE Y, ABE T, et al. Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post installed anchors[J].Structures,2023,50:1252-1263.
[7] CAO D D, CHAN M, NG S. Modeling and forecasting of nanoFeCu treated sewage quality using recurrent neu ral network (RNN)[J]. Computation, 2023, 11(2): 39.
[8] ABBASIMEHR H, SHABANI M, YOUSEFI M. An op timized model using LSTM network for demand forecas ting[J]. Computers & Industrial Engineering, 2020, 143: 106435.
[9] CROSTON J D. Forecasting and stock control for inter mittent demands[J]. Journal of the Operational Re search Society, 1972, 23(3): 289-303.
[10] SYNTETOS A A, BOYLAN J E. The accuracy of inter mittent demand estimates[J]. International Journal of Forecasting, 2005, 21(2): 303-314.
[11] GUTIERREZ R S, SOLIS A O, MUKHOPADHYAY S. Lumpy demand forecasting using neural networks[J]. In ternational Journal of Production Economics, 2008, 111 (2): 409-420.
[12]张瑞. 不常用备件需求预测模型与方法研究[D]. 武 汉: 华中科技大学, 2011.
ZHANG R. Research on forecasting models and methods of rarely used spare parts′ demand[D]. Wuhan: Hua zhong University of Science and Technology, 2011.
[13] SHI Q Q, YIN J M, CAI J J, et al. Block Hankel tensor ARIMA for multiple short time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelli gence, 2020, 34(4): 5758-5766.
[14] BOUKHTOUTA A, JENTSCH P. Support vector machine for demand forecasting of Canadian armed forces spare parts[C]∥2018 6th International Symposium on Compu tational and Business Intelligence (ISCBI). Piscataway: IEEE, 2018: 59-64.
[15] YOKOTA T, EREM B, GULER S, et al. Missing slice recovery for tensors using a low-rank model in embedded space[C]∥2018 IEEE/CVF Conference on Computer Vi sion and Pattern Recognition. Piscataway: IEEE, 2018: 8251-8259.
[16]周晓艳, 唐涛, 张思乾, 等. 多角度SAR图像非目标 遮挡缺失信息重构[J]. 信号处理, 2021, 37(9): 1569-1580.
ZHOU X Y, TANG T, ZHANG S Q, et al. Missing information reconstruction for multi-aspect SAR image occlusion[J]. Journal of Signal Processing, 2021, 37 (9): 1569-1580.
[17] CHENG J, DEKKERS J C M, FERNANDO R L. Cross validation of best linear unbiased predictions of breeding values using an efficient leave-one-out strategy[J]. Jour nal of Animal Science, 2020, 98(S4): 10-11.