[1] 钱金戈, 徐丹, 史豪杰. 图像识别技术在变电站屏柜运检中的应用[J].工业控制计算机, 2021, 34(3): 7-8, 11.QIAN J G, XU D, SHI H J. Application of operation and maintenance of substation cabinet based on image recognition[J].Industrial Control Computer, 2021, 34(3):7-8, 11.[2] LOWE D G. Object recognition from local scale-invariant features[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway: IEEE, 2002: 1150-1157.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′05). Piscataway: IEEE, 2005: 886-893.
[4] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448.
[7] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J].南方电网技术, 2019, 13(12): 79-84.LI W P, XIE K, LIAO X, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J].Southern Power System Technology, 2019, 13(12):79-84.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[9] 吕禾丰, 陆华才. 基于YOLOv5算法的交通标志识别技术研究[J].电子测量与仪器学报, 2021, 35(10): 137-144.LYU H F, LU H C. Research on traffic sign recognition technology based on YOLOv5 algorithm[J].Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 137-144.
[10] 张晓鹏, 许志远, 曲胜, 等. 基于改进YOLOv5深度学习的海上船舶识别算法[J].大连海洋大学学报, 2022, 37(5):866-872.ZHANG X P, XU Z Y, QU S, et al. Recognition algorithm of marine ship based on improved YOLOv5 deep learning[J].Journal of Dalian Ocean University, 2022, 37(5):866-872.
[11] 周逸博, 马毓涛, 赵艳茹. 基于YOLOv5s和Android的苹果树皮病害识别系统设计[J].广东农业科学, 2022, 49(10):155-163.ZHOU Y B, MA Y T, ZHAO Y R. Design of mobile APP recognition system for apple bark disease based on YOLOv5s and Android[J].Guangdong Agricultural Sciences, 2022, 49(10):155-163.
[12] 院老虎, 常玉坤, 刘家夫. 基于改进YOLOv5s的雾天场景车辆检测方法[J].郑州大学学报(工学版), 2023, 44(3): 35-41.YUAN L H, CHANG Y K, LIU J F. Vehicle detection method based on improved YOLOv5s in foggy scene[J].Journal of Zhengzhou University (Engineering Science), 2023, 44(3): 35-41.
[13] 唐靓, 余明慧, 武明虎, 等. 基于改进YOLOv5的绝缘子缺陷检测算法[J].华中师范大学学报(自然科学版), 2022, 56(5): 771-780.TANG J, YU M H, WU M H, et al. Insulator defect detection algorithm based on improved YOLOv5[J].Journal of Central China Normal University (Natural Sciences), 2022, 56(5): 771-780.
[14] 曾水玲, 唐敏之. 基于模糊推理的电气设备红外图像分割[J].红外技术, 2023, 45(5): 446-454.ZENG S L, TANG M Z. Infrared image segmentation for electrical equipment based on fuzzy inference[J].Infrared Technology, 2023, 45(5): 446-454.
[15] 任杰, 高岭, 于佳龙, 等. 面向边缘设备的高能效深度学习任务调度策略[J].计算机学报, 2020, 43(3): 440-452.REN J, GAO L, YU J L, et al. Energy-efficient deep learning task scheduling strategy for edge device[J].Chinese Journal of Computers, 2020, 43(3):440-452.
[16] OR AN I L, SEICULESCU C, C LEANU C D. Benchmarking TensorFlow Lite quantization algorithms for deep neural networks[C]∥2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI). Piscataway: IEEE, 2022: 221-226.
[17] SHIN D J, KIM J J. A deep learning framework perfor-mance evaluation to use YOLO in Nvidia Jetson platform[J].Applied Sciences, 2022, 12(8): 3734.
[18] 李双峰. TensorFlow Lite: 端侧机器学习框架[J].计算机研究与发展, 2020, 57(9): 1839-1853.LI S F. TensorFlow Lite: on-device machine learning framework[J].Journal of Computer Research and Deve-lopment, 2020, 57(9): 1839-1853.