[1] MEHEDI S T, ANWAR A, RAHMAN Z, et al. Deep transfer learning based intrusion detection system for elec tric vehicular networks[J]. Sensors (Basel, Switzer land), 2021, 21(14): 4736. [2] HOSSAIN M D, INOUE H, OCHIAI H, et al. An effec tive in-vehicle CAN bus intrusion detection system using CNN deep learning approach[C]∥2020 IEEE Global Communications Conference. Piscataway: IEEE, 2021: 1-6.
[3] SONG H M, WOO J, KIM H K. In-vehicle network in trusion detection using deep convolutional neural network [J]. Vehicular Communications, 2020, 21: 100198.
[4] YANG L, MOUBAYED A, SHAMI A. MTH-IDS: a multitiered hybrid intrusion detection system for Internet of Vehicles[J]. IEEE Internet of Things Journal, 2022, 9(1): 616-632.
[5] YANG L, SHAMI A. A transfer learning and optimized CNN based intrusion detection system for Internet of Ve hicles[C]∥IEEE International Conference on Communi cations. Piscataway: IEEE, 2022: 2774-2779.
[6] YANG L, SHAMI A, STEVENS G, et al. LCCDE: a de cision-based ensemble framework for intrusion detection in the Internet of Vehicles[EB/OL].(2022-09-01)[2023-12-19]. https:/ /arxiv.org/abs/2208.03399.
[7] WU K H, CHEN Z G, LI W. A novel intrusion detection model for a massive network using convolutional neural networks[J]. IEEE Access, 2018, 6: 50850-50859.
[8] LI X H, HU Z Y, XU M F, et al. Transfer learning based intrusion detection scheme for Internet of Vehicles [J]. Information Sciences, 2021, 547: 119-135.
[9] DUTA I C, LIU L, ZHU F, et al. Improved residual net works for image and video recognition[EB/OL].(2020-04-10)[2023-12-19]. https:/ /arxiv. org/abs/ 2004.04989.
[10]WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoen coders[EB/OL]. (2023-01-02)[2023-12-19]. ht tps:∥arxiv.org/abs/2301.00808.
[11] SANDLER M, HOWARD A, ZHU M L, et al. Mobile NetV2: inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pat tern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[12] SEO E, SONG H M, KIM H K. GIDS: GAN based intrusion detection system for in-vehicle network[C]∥2018 16th Annual Conference on Privacy, Security and Trust (PST). Piscataway: IEEE, 2018: 1-6.
[13] ROSAY A, CARLIER F, LEROUX P. MLP4NIDS: an efficient MLP-based network intrusion detection for CIC IDS2017 dataset[C]∥ International Conference on Ma chine Learning for Networking. Cham: Springer, 2020: 240-254.
[14] ALSHAMMARI A, ZOHDY M A, DEBNATH D, et al. Classification approach for intrusion detection in vehicle systems[J]. Wireless Engineering and Technology, 2018, 9(4): 79-94.
[15] OLUFOWOBI H, YOUNG C, ZAMBRENO J, et al. SAIDuCANT: specification-based automotive intrusion detection using controller area network (CAN) timing [J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1484-1494.
[16] ASHRAF J, BAKHSHI A D, MOUSTAFA N, et al. No vel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transpor tation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4507-4518.
[17] SHARAFALDIN I, HABIBI LASHKARI A, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]∥Proceedings of the 4th International Conference on Information Systems Security and Privacy. Cham: Springer, 2018: 108-116.
[18] ABDULHAMMED R, FAEZIPOUR M, MUSAFER H, et al. Efficient network intrusion detection using PCA-based dimensionality reduction of features[C]∥2019 Interna tional Symposium on Networks, Computers and Communi cations (ISNCC).Piscataway: IEEE, 2019: 1-6.
[19] ELMASRY W, AKBULUT A, ZAIM A H. Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic[J]. Computer Networks, 2020, 168: 107042.
[20]张安琳, 张启坤, 黄道颖, 等. 基于CNN与BiGRU融 合神经网络的入侵检测模型[J]. 郑州大学学报(工 学版), 2022, 43(3): 37-43.
ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intru sion detection model based on CNN and BiGRU fused neural network[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 37-43.
[21]吴正江, 杨天, 郑爱玲, 等. 融合拟单层覆盖粗集的 集值数据平衡方法研究[J]. 计算机工程与应用, 2022, 58(19): 166-173.
WU Z J, YANG T, ZHENG A L, et al. Study on set-val ued data balancing method by semi-monolayer covering rough set[J]. Computer Engineering and Applications, 2022, 58(19): 166-173.
[22] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Trans actions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[23] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]∥2022 IEEE/CVF Conference on Computer Vi sion and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 11966-11976