[1]魏明军,李 凤,刘亚志,等.基于改进WGAN-GP和ResNet的车联网入侵检测方法[J].郑州大学学报(工学版),2024,45(04):30-37.[doi:10.13705/ j.issn.1671-6833.2024.04.008]
 WEI Mingjun,LI Feng,LIU Yazhi,et al.An Intrusion Detection Method for Internet of Vehicles Based on Improved WGAN-GP and ResNet[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):30-37.[doi:10.13705/ j.issn.1671-6833.2024.04.008]
点击复制

基于改进WGAN-GP和ResNet的车联网入侵检测方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
30-37
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
An Intrusion Detection Method for Internet of Vehicles Based on Improved WGAN-GP and ResNet
文章编号:
1671-6833(2024)04-0030-08
作者:
魏明军12 李 凤1 刘亚志12 李 辉1
1.华北理工大学 人工智能学院,河北 唐山 063210;2.河北省工业智能感知重点实验室,河北 唐山 063210
Author(s):
WEI Mingjun12 LI Feng1 LIU Yazhi12 LI Hui1
1.College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; 2.Hebei Provincial Key Laboratory of Industrial Intelligent Perception, Tangshan 063210, China
关键词:
车联网 入侵检测 生成对抗网络 残差神经网络 特征融合
Keywords:
Internet of Vehicles intrusion detection generate adversarial networks residual neural network fea ture fusion
分类号:
TP393 TN929.5
DOI:
10.13705/ j.issn.1671-6833.2024.04.008
文献标志码:
A
摘要:
为保护车联网系统免受网络攻击的威胁,同时提高车联网入侵检测的准确率,针对车辆网络数据流量大 且攻击类型不平衡的特点,提出了一种新的车联网入侵检测方法(AQVAE-RGSNet)。该方法通过一种对抗量化变 分自编码器以对车辆网络数据进行不平衡处理,该编码器通过结合矢量量化变分自编码器与带梯度惩罚的生成对 抗网络进行构建,以缓解数据集中异常攻击类型样本数量极度不平衡的问题,并使用ResNet网络与改进的分段残 差神经网络对输入的样本数据进行联合学习并预测其攻击类型。实验结果表明:AQVAE-RGSNet在车联网数据集 CICIDS2017和CAN-intrusion-dataset上的F1得分分别达到了0.998 6和0.999 7;在保证最佳训练效果的前提下, 能够更有效地识别车辆网络之中的攻击威胁。
Abstract:
In order to protect the Internet of Vehicles system from the threat of network attacks and improve the ac curacy of intrusion detection, a new intrusion detection method (AQVAE-RGSNet) was proposed for the character istics of large data flow and unbalanced attack types in the vehicle network. Firstly, the adversarial quantized varia tional auto encoder was used to process the vehicle network data imbalance. And it was constructed by combining the vector quantized variational auto encoder-2 and the generative adversarial network with gradient penalty to alle viate the extremely unbalanced number of samples of abnormal attack types in the dataset. Afterwards, the ResNet and improved segmented residual neural network were used to learn the input sample data and predict its attack cat egory. The experimental results indicated that AQVAE-RGSNet achieved F1 scores of 0.998 6 and 0.999 7 on the vehicle networking dataset CICDS2017 and CAN-intrusion-dataset, respectively. On the premise of ensuring the best training effect, it could identify attack threats more effectively in the vehicle network.

参考文献/References:

[1] MEHEDI S T, ANWAR A, RAHMAN Z, et al. Deep transfer learning based intrusion detection system for elec tric vehicular networks[J]. Sensors (Basel, Switzer land), 2021, 21(14): 4736. 

[2] HOSSAIN M D, INOUE H, OCHIAI H, et al. An effec tive in-vehicle CAN bus intrusion detection system using CNN deep learning approach[C]∥2020 IEEE Global Communications Conference. Piscataway: IEEE, 2021: 1-6. 
[3] SONG H M, WOO J, KIM H K. In-vehicle network in trusion detection using deep convolutional neural network [J]. Vehicular Communications, 2020, 21: 100198. 
[4] YANG L, MOUBAYED A, SHAMI A. MTH-IDS: a multitiered hybrid intrusion detection system for Internet of Vehicles[J]. IEEE Internet of Things Journal, 2022, 9(1): 616-632. 
[5] YANG L, SHAMI A. A transfer learning and optimized CNN based intrusion detection system for Internet of Ve hicles[C]∥IEEE International Conference on Communi cations. Piscataway: IEEE, 2022: 2774-2779. 
[6] YANG L, SHAMI A, STEVENS G, et al. LCCDE: a de cision-based ensemble framework for intrusion detection in the Internet of Vehicles[EB/OL].(2022-09-01)[2023-12-19]. https:/ /arxiv.org/abs/2208.03399. 
[7] WU K H, CHEN Z G, LI W. A novel intrusion detection model for a massive network using convolutional neural networks[J]. IEEE Access, 2018, 6: 50850-50859. 
[8] LI X H, HU Z Y, XU M F, et al. Transfer learning based intrusion detection scheme for Internet of Vehicles [J]. Information Sciences, 2021, 547: 119-135. 
[9] DUTA I C, LIU L, ZHU F, et al. Improved residual net works for image and video recognition[EB/OL].(2020-04-10)[2023-12-19]. https:/ /arxiv. org/abs/ 2004.04989. 
[10]WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoen coders[EB/OL]. (2023-01-02)[2023-12-19]. ht tps:∥arxiv.org/abs/2301.00808. 
[11] SANDLER M, HOWARD A, ZHU M L, et al. Mobile NetV2: inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pat tern Recognition. Piscataway: IEEE, 2018: 4510-4520. 
[12] SEO E, SONG H M, KIM H K. GIDS: GAN based intrusion detection system for in-vehicle network[C]∥2018 16th Annual Conference on Privacy, Security and Trust (PST). Piscataway: IEEE, 2018: 1-6. 
[13] ROSAY A, CARLIER F, LEROUX P. MLP4NIDS: an efficient MLP-based network intrusion detection for CIC IDS2017 dataset[C]∥ International Conference on Ma chine Learning for Networking. Cham: Springer, 2020: 240-254. 
[14] ALSHAMMARI A, ZOHDY M A, DEBNATH D, et al. Classification approach for intrusion detection in vehicle systems[J]. Wireless Engineering and Technology, 2018, 9(4): 79-94. 
[15] OLUFOWOBI H, YOUNG C, ZAMBRENO J, et al. SAIDuCANT: specification-based automotive intrusion detection using controller area network (CAN) timing [J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1484-1494. 
[16] ASHRAF J, BAKHSHI A D, MOUSTAFA N, et al. No vel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transpor tation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4507-4518.
[17] SHARAFALDIN I, HABIBI LASHKARI A, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]∥Proceedings of the 4th International Conference on Information Systems Security and Privacy. Cham: Springer, 2018: 108-116. 
[18] ABDULHAMMED R, FAEZIPOUR M, MUSAFER H, et al. Efficient network intrusion detection using PCA-based dimensionality reduction of features[C]∥2019 Interna tional Symposium on Networks, Computers and Communi cations (ISNCC).Piscataway: IEEE, 2019: 1-6.
[19] ELMASRY W, AKBULUT A, ZAIM A H. Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic[J]. Computer Networks, 2020, 168: 107042. 
[20]张安琳, 张启坤, 黄道颖, 等. 基于CNN与BiGRU融 合神经网络的入侵检测模型[J]. 郑州大学学报(工 学版), 2022, 43(3): 37-43. 
ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intru sion detection model based on CNN and BiGRU fused neural network[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 37-43. 
[21]吴正江, 杨天, 郑爱玲, 等. 融合拟单层覆盖粗集的 集值数据平衡方法研究[J]. 计算机工程与应用, 2022, 58(19): 166-173. 
WU Z J, YANG T, ZHENG A L, et al. Study on set-val ued data balancing method by semi-monolayer covering rough set[J]. Computer Engineering and Applications, 2022, 58(19): 166-173. 
[22] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Trans actions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. 
[23] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]∥2022 IEEE/CVF Conference on Computer Vi sion and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 11966-11976

相似文献/References:

[1]李永强,刘兆伟.基于区块链的车联网安全信息共享机制设计[J].郑州大学学报(工学版),2022,43(01):103.[doi:10.13705/j.issn.1671-6833.2022.01.005]
 LI Yongqiang,LIU Zhaowei.Blockchain-based Secure Data Sharing Mechanism Design in the Vehicular Networks[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):103.[doi:10.13705/j.issn.1671-6833.2022.01.005]
[2]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]

更新日期/Last Update: 2024-06-14