[1] BARREDO ARRIETA A, GIL-LOPEZ S, LAÑA I, et al. On the post-hoc explainability of deep echo state net works for time series forecasting, image and video classi fication[J]. Neural Computing and Applications, 2022, 34(13): 10257-10277. [2] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进 Ghost-YOLOv5红外目标检测算法[J]. 郑州大学学报 (工学版), 2022, 43(1): 20-26.
LI B M, JIN R L, XU Z F, et al. An improved Ghost YOLOv5 infrared target detection algorithm based on fea ture distillation[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 20-26.
[3] SHEN Q Y, ZHANG H W, MAO Y. Improving deep echo state network with neuronal similarity-based iterative pruning merging algorithm[J]. Applied Sciences, 2023, 13(5): 2918.
[4] GAO R B, LI R L, HU M H, et al. Dynamic ensemble deep echo state network for significant wave height forecasting[J]. Applied Energy, 2023, 329: 120261.
[5] ZEBENDE G F, DA SILVA FILHO A M. Detrended multiple cross-correlation coefficient[J]. Physica A: Sta tistical Mechanics and its Applications, 2018, 510: 91-97.
[6] WANG F, XU J, FAN Q J. Statistical properties of the detrended multiple cross-correlation coefficient[J]. Com munications in Nonlinear Science and Numerical Simula tion, 2021, 99: 105781.
[7] DE ALMEIDA BRITO A, DE ARAÚJO H A, ZEBENDE G F. Detrended multiple cross-correlation coefficient ap plied to solar radiation, air temperature and relative hu midity[J]. Scientific Reports, 2019, 9: 19764.
[8] GALLICCHIO C, MICHELI A. Echo state property of deep reservoir computing networks[J]. Cognitive Compu tation, 2017, 9(3): 337-350.
[9] BEN-SALHA O, MOKNI K. Detrended cross-correlation analysis in quantiles between oil price and the US stock market[J]. Energy, 2022, 242: 122918.
[10] BARLACCHI G, DE NADAI M, LARCHER R, et al. A multi-source dataset of urban life in the city of Milan and the Province of Trentino[J]. Scientific Data, 2015, 2: 150055.
[11] LI D Y, LIU F, QIAO J F, et al. Structure optimization for echo state network based on contribution[J]. Tsing hua Science and Technology, 2019, 24(1): 97-105.
[12] LI D, JIANG F X, CHEN M, et al. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks[J]. Energy, 2022, 238: 121981.
[13]高金峰, 庞昊, 杜耀恒. 基于GRU网络的配电网故障 数量等级预测方法[J]. 郑州大学学报(工学版), 2019, 40(5): 39-44.
GAO J F, PANG H, DU Y H. A method for predicting the number of faults in distribution network based on GRU neural network[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(5): 39-44.
[14] CHEN Z L, YANG C L, QIAO J F. The optimal design and application of LSTM neural network based on the hy brid coding PSO algorithm[J]. The Journal of Supercom puting, 2022, 78(5): 7227-7259.
[15] CUI M S. District heating load prediction algorithm based on bidirectional long short-term memory network model [J]. Energy, 2022, 254: 124283.
[16] HUANG Y P, YEN M F. A new perspective of perform ance comparison among machine learning algorithms for financial distress prediction[J]. Applied Soft Computing, 2019, 83: 105663.
[17] LI Y M, PENG T, HUA L, et al. Research and applica tion of an evolutionary deep learning model based on im proved grey wolf optimization algorithm and DBN-ELM for AQI prediction[J]. Sustainable Cities and Society, 2022, 87: 104209.