[4] 纪勇, 刘丹丹, 罗勇, 等. 基于霍夫投票的变电站设 备三维点云识别算法[J]. 郑州大学学报(工学版), 2019, 40(3): 1-6, 12.
JI Y, LIU D D, LUO Y, et al. Recognition of three-di mensional substation equipment based on Hough transform [J]. Journal of Zhengzhou University (Engineering Sci ence), 2019, 40(3): 1-6, 12.
[5] KUTULAKOS K N, SEITZ S M. A theory of shape by space carving[J]. International Journal of Computer Vi sion, 2000, 38(3): 199-218.
[6] HUANG P H, MATZEN K, KOPF J, et al. DeepMVS: learning multi-view stereopsis[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2821-2830.
[7] JI M Q, GALL J, ZHENG H T, et al. SurfaceNet: an end to-end 3D neural network for multiview stereopsis[C]∥2017 IEEE International Conference on Computer Vision (IC CV). Piscataway: IEEE, 2017: 2326-2334.
[8] YAO Y, LUO Z X, LI S W, et al. MVSNet: depth infer ence for unstructured multi-view stereo[C]∥European Conference on Computer Vision. Cham: Springer, 2018: 785-801.
[9] YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pat tern Recognition (CVPR). Piscataway: IEEE, 2019: 5520-5529.
[10]杜弘志, 张腾, 孙岩标, 等. 基于门控循环单元的立 体匹配方法研究[J]. 激光与光电子学进展, 2021, 58 (14): 387-394.
DU H Z, ZHANG T, SUN Y B, et al. Stereo matching method based on gated recurrent unit networks[J]. Laser & Optoelectronics Progress, 2021, 58(14): 387-394.
[11] CHEN R, HAN S F, XU J, et al. Point-based multi view stereo network[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 1538-1547.
[12] YU Z H, GAO S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and Gauss Newton refinement[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1946-1955.
[13] MA L B, LI N, YU G, et al. Pareto-wise ranking classi fier for multi-objective evolutionary neural architecture search[J]. IEEE Transactions on Evolutionary Computa tion, 2023: 1-12.
[14] LI N, MA L B, YU G, et al. Survey on evolutionary deep learning: principles, algorithms, applications, and open issues[J]. ACM Computing Surveys, 2024, 56 (2): 1-34.
[15] COLLINS R T. A space-sweep approach to true multi-im age matching[C]∥Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Rec ognition. Piscataway: IEEE, 2002: 358-363.
[16] CAMPBELL N D, VOGIATZIS G, HERNÁNDEZ C, et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]∥ 10th European Conference on Computer Vision. New York: ACM, 2008: 766-779.
[17] FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376.
[18] TOLA E, STRECHA C, FUA P. Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications, 2012, 23(5): 903-920.
[19] GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion [C]∥2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 873-881.
[20] YU L Q, LI X Z, FU C W, et al. PU-net: point cloud upsampling network[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2790-2799.
[21] MI Z X, DI C, XU D. Generalized binary search network for highly-efficient multi-view stereo[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 12981-12990.
[22] DING Y K, YUAN W T, ZHU Q T, et al. TransMVS Net: global context-aware multi-view stereo network with transformers[C]∥2022 IEEE/CVF Conference on Com puter Vision and Pattern Recognition (CVPR). Piscata way: IEEE, 2022: 8575-8584.