China Internet Network Information Center. The 52nd China statistical report on internet development[R/OL]. (2023-08-23)[2023-09-01]. https:∥www. cnnic. net.cn/n4/2023/0828/c88-10829.html. [2] 梁兆君, 但志平, 罗衍潮, 等. 基于BERT模型的增 强混合神经网络的谣言检测[J]. 计算机应用与软件, 2021, 38(3): 147-152, 189.
LIANG Z J, DAN Z P, LUO Y C, et al. Rumor detec tion of improved hybrid neural network based on BERT model[J]. Computer Applications and Software, 2021, 38(3)147-152, 189.
[3] LI J W, NI S W, KAO H Y. Meet the truth: leverage objective facts and subjective views for interpretable rumor detection[EB/OL]. (2021-07-21)[2023-09-01]. https:∥arxiv.org/abs/2107.10747.
[4] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]∥Twenty Fifth International Joint Conference on Artificial Intelli gence. New York: IJCAI, 2016: 3818-3824.
[5] MA J, GAO W, WONG K F. Rumor detection on twitter with tree-structured recursive neural networks[C]∥Pro ceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2018:1980-1989.
[6] 胡斗, 卫玲蔚, 周薇, 等. 一种基于多关系传播树的 谣言检测方法[J]. 计算机研究与发展, 2021, 58 (7): 1395-1411.
HU D, WEI L W, ZHOU W, et al. A rumor detection approach based on multi-relational propagation tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411.
[7] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional net works[J]. Proceedings of the AAAI Conference on Artifi cial Intelligence, 2020, 34(1): 549-556.
[8] 杨延杰, 王莉, 王宇航. 融合源信息和门控图神经网 络的谣言检测研究[J]. 计算机研究与发展, 2021, 58 (7): 1412-1424.
YANG Y J, WANG L, WANG Y H. Rumor detection based on source information and gating graph neural net work[J]. Journal of Computer Research and Develop ment, 2021, 58(7): 1412-1424.
[9] BAI N, MENG F R, RUI X B, et al. Rumour detection based on graph convolutional neural net[J]. IEEE Ac cess, 2021, 9: 21686-21693.
[10]孟青, 刘波, 张恒远, 等. 在线社交网络中群体影响 力的建模与分析[J]. 计算机学报, 2021, 44(6): 1064-1079.
MENG Q, LIU B, ZHANG H Y, et al. Multi-relational group influence modeling and analysis in online social networks[J]. Chinese Journal of Computers, 2021, 44 (6): 1064-1079.
[11]张铭泉, 周辉, 曹锦纲. 基于注意力机制的双BERT 有向情感文本分类研究[J]. 智能系统学报, 2022, 17 (6): 1220-1227.
ZHANG M Q, ZHOU H, CAO J G. Dual BERT directed sentiment text classification based on attention mechanism [J]. CAAI Transactions on Intelligent Systems, 2022, 17(6): 1220-1227.
[12] MA J, GAO W, WEI Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]∥Proceedings of the 24th ACM International on Conference on Information and Knowledge Manage ment. New York: ACM, 2015: 1751-1754.
[13] LIU Y H, JIN X L, SHEN H W, et al. Do rumors dif fuse differently from non-rumors? a systematically empiri cal analysis in Sina Weibo for rumor identification[J]. Advances in Knowledge Discovery and Data Mining, 2017, 10234: 407-420.
[14]WU K, YANG S, ZHU K Q. False rumors detection on Sina Weibo by propagation structures[C]∥2015 IEEE 31st International Conference on Data Engineering. Pisca taway: IEEE, 2015: 651-662.
[15]WANG Y H, WANG L, YANG Y J, et al. SemSeq4FD: integrating global semantic relationship and local sequential order to enhance text representation for fake news de tection[J]. Expert Systems with Applications, 2021, 166: 114090.
[16] MA J, GAO W, WONG K F. Detect rumors on Twitter by promoting information campaigns with generative ad versarial learning[C]∥WWW ′19: The World Wide Web Conference. New York: ACM, 2019: 3049-3055.
[17] SHARMA K, QIAN F, JIANG H, et al. Combating fake news: a survey on identification and mitigation techniques [J]. ACM Transactions on Intelligent Systems and Tech nology, 10(3): 1-42.
[18] PHAN H T, NGUYEN N T, HWANG D. Fake news de tection: a survey of graph neural network methods[J]. Applied Soft Computing, 2023, 139: 110235.
[19] SONG C G, SHU K, WU B. Temporally evolving graph neural network for fake news detection[J]. Information Processing & Management, 2021, 58(6): 102712.
[20] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter[C]∥International World Wide Web Conference Committee (IW3C2). New York: ACM, 2011: 1-10.
[21] LU Y J, LI C T. GCAN: graph-aware co-attention net works for explainable fake news detection on social media [EB/OL]. (2020-04-24)[2023-09-01]. https:∥ arxiv.org/abs/2004.11648.
[22]刘雅辉, 靳小龙, 沈华伟, 等. 社交媒体中的谣言识别 研究综述[J]. 计算机学报, 2018, 41(7): 1536-1558.
LIU Y H, JIN X L, SHEN H W, et al. A survey on ru mor identification over social media[J]. Chinese Journal of Computers, 2018, 41(7): 1536-1558.
[23] YANG J, COUNTS S, MORRIS M R, et al. Microblog credibility perceptions: comparing the USA and China [C]∥Proceedings of the 2013 conference on Computer Supported Cooperative Work. New York: ACM, 2013: 575-586.
[24] GONG S Z, SINNOTT R O, QI J Z, et al. Fake news detection through graph-based neural networks: a survey [EB/OL]. (2023-07-24)[2023-09-01]. https:∥ arxiv.org/abs/2307.12639.
[25] LIU Y H, JIN X L, SHEN H W. Towards early identifi cation of online rumors based on long short-term memory networks[J]. Information Processing & Management, 2019, 56(4): 1457-1467.
[26] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre training of deep bidirectional transformers for language understanding[EB/OL]. (2019-05-24)[2023-09-01]. https:∥arxiv.org/abs/1810.04805.