[1] HUAN Z, LV S Y, HOU Z J, et al. An evaluation strat egy for the symmetry and consistency of lower limb seg ments during upper limb loading[J]. IEEE Sensors Jour nal, 2021, 21(5): 6440-6449. [2] PHAM C, NGUYEN-THAI S, TRAN-QUANG H, et al. SensCapsNet: deep neural network for non-obtrusive sens ing based human activity recognition[J]. IEEE Access, 2020, 8: 86934-86946.
[3] ZHU R, XIAO Z L, LI Y, et al. Efficient human activity recognition solving the confusing activities via deep en semble learning[J]. IEEE Access, 2019, 7: 75490-75499.
[4] CHEN Y Q, XUE Y. A deep learning approach to human activity recognition based on single accelerometer[C]∥ 2015 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2015: 1488-1492.
[5] IGNATOV A. Real-time human activity recognition from accelerometer data using convolutional neural networks [J]. Applied Soft Computing, 2018, 62: 915-922.
[6] WANG L K, LIU R Y. Human activity recognition based on wearable sensor using hierarchical deep LSTM net works[J]. Circuits, Systems, and Signal Processing, 2020, 39(2): 837-856.
[7] SU T T, SUN H Z, MA C M, et al. HDL: hierarchical deep learning model based human activity recognition using smartphone sensors[C]∥2019 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2019: 1-8.
[8] ZHOU J, CUI G Q, HU S D, et al. Graph neural net works: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[9] AHMAD N, CHOW S H C, LEUNG H F. Beyond the gates of Euclidean space: temporal-discrimination-fusions and attention-based graph neural network for human activ ity recognition[EB/OL]. (2022-06-10)[2023-11-02]. https:∥arxiv.org/abs/2206.04855.
[10] DONNER R V, NORBERT M, YONG Z, et al. Nonlin ear time series analysis by means of complex networks [J]. Scientia Sinica Physica, Mechanica & Astronomi ca, 2020, 50(1): 010509.
[11] ZHU S L, GAN L. Specific emitter identification based on horizontal visibility graph[C]∥2017 3rd IEEE Inter national Conference on Computer and Communications(ICCC). Piscataway: IEEE, 2017: 1328-1332.
[12] LI C Y, MO L F, YAN R Q. Fault diagnosis of rolling bearing based on WHVG and GCN[J]. IEEE Transac tions on Instrumentation and Measurement, 2021, 70: 3519811.
[13]高金峰, 秦瑜瑞, 殷红德. 基于小波包变换和支持向 量机的故障选线方法[J]. 郑州大学学报(工学版), 2020, 41(1): 63-69.
GAO J F, QIN Y R, YIN H D. Fault line selection based on wavelet packet transform and support vector machine [J]. Journal of Zhengzhou University (Engineering Sci ence), 2020, 41(1): 63-69.
[14] LOTFOLLAHI-YAGHIN M A, KOOHDARAGH M A. Examining the function of wavelet packet transform (WPT) and continues wavelet transform (CWT) in rec ognizing the crack specification[J]. KSCE Journal of Civil Engineering, 2011, 15(3): 497-506.
[15] BRUNO B, MASTROGIOVANNI F, SGORBISSA A. Wearable inertial sensors: applications, challenges, and public test benches[J]. IEEE Robotics & Automation Magazine, 2015, 22(3): 116-124.
[16] POSSAS R, CACERES S P, RAMOS F. Egocentric ac tivity recognition on a budget[C]∥2018 IEEE/CVF Con ference on Computer Vision and Pattern Recognition. Pis cataway: IEEE, 2018: 5967-5976.
[17]郭毅博, 孟文化, 范一鸣, 等. 基于可穿戴传感器数 据的人体行为识别数据特征提取方法[J]. 计算机辅 助设计与图形学学报, 2021, 33(8): 1246-1253.
GUO Y B, MENG W H, FAN Y M, et al. Wearable sen sor data based human behavior recognition: a method of data feature extraction[J]. Journal of Computer-Aided De sign & Computer Graphics, 2021, 33(8): 1246-1253.
[18] JORDAO A, TORRES L A B, SCHWARTZ W R. Novel approaches to human activity recognition based on accel erometer data[J]. Signal, Image and Video Processing, 2018, 12(7): 1387-1394.
[19] HUANG Y, YANG X S, GAO J Y, et al. Knowledge driven egocentric multimodal activity recognition[J]. ACM Transactions on Multimedia Computing, Communi cations, and Applications, 16(4): 133.