[1]周俊岑,甘芳吉,王思宇,等.基于超声导波的高温管道壁厚监测技术优化[J].郑州大学学报(工学版),2024,45(04):140-146.[doi:10.13705/ j.issn.1671-6833.2024.04.006]
 ZHOU Juncen,GAN Fangji,WANG Siyu,et al.Optimization of Wall Thickness Monitoring Technology for High Temperature Pipelines Based on Ultrasonic Guided Waves[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):140-146.[doi:10.13705/ j.issn.1671-6833.2024.04.006]
点击复制

基于超声导波的高温管道壁厚监测技术优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
140-146
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
Optimization of Wall Thickness Monitoring Technology for High Temperature Pipelines Based on Ultrasonic Guided Waves
文章编号:
1671-6833(2024)04-0140-07
作者:
周俊岑 甘芳吉 王思宇 钟 涛 杨随先
四川大学 机械工程学院,四川 成都 610041
Author(s):
ZHOU Juncen GAN Fangji WANG Siyu ZHONG Tao YANG Suixian
School of Mechanical Engineering, Sichuan University, Chengdu 610041, China
关键词:
超声导波技术 高温管道 壁厚测量 声速修正 长期监测可靠性
Keywords:
ultrasonic guided wave technology high temperature pipeline wall thickness measurement sound ve locity correctionreliability of long-term monitoring
分类号:
TP23
DOI:
10.13705/ j.issn.1671-6833.2024.04.006
文献标志码:
A
摘要:
超声导波技术因可将超声换能器与高温环境隔离而常被用于高温管道的壁厚监测系统,但高温下常规耦 合技术失效问题和信号信噪比低的问题影响了测量系统的可靠性和测量精度。设计用于传导超声信号的导波杆, 基于声学匹配原理优化干耦合技术,解决高温环境下常规耦合技术的失效问题。提出自适应激励方式和测量数据 的乘幂算法以提高高温下测量系统的自适应性和信号信噪比。采用智能分段声速方法对声速进行修正,使高温超 声导波测厚系统的测量精度达到±0.03 mm。实验结果表明:在500 ℃的长期热源环境下,超声波换能器端的温度 最高不超过56 ℃,验证了测量系统在高温环境下的可靠性。
Abstract:
Ultrasonic guided wave technology was often used for wall thickness monitoring system of high tempera ture pipelines because it could isolate the ultrasonic transducer from the high temperature environment. However, the failure of conventional coupling technology and the low signal-to-noise ratio of the signal at high temperature af fected the reliability and measurement accuracy of the measurement system. A waveguide rod was designed to con duct ultrasonic signals. Based on the acoustic matching principle, the dry coupling technology was optimized to solve the failure problem of conventional coupling technology in high temperature environment. The adaptive excita tion method and the power multiplication algorithm of measurement data were proposed to improve the adaptability and signal-to-noise ratio of the measurement system at high temperature. Intelligent segmentation of the speed of sound was used to correct the speed of sound, and the method made the measurement accuracy of the high-tempera ture ultrasonic guided wave thickness measurement system reach ±0.03 mm. The experimental results showed that the temperature of the ultrasonic transducer end was not more than 56 ℃ at the maximum under the environment of a long term heat source of 500 ℃, which verified the reliability of the measurement system in high temperature en vironments.

参考文献/References:

[1] KIM W S, LOTSBERG I. Fatigue test data for welded connections in ship-shaped structures[J]. Journal of Off shore Mechanics and Arctic Engineering, 2005, 127(4): 359-365. 

[2] CEGLA F B, CAWLEY P, ALLIN J, et al. High-tem perature (>500 ℃) wall thickness monitoring using dry coupled ultrasonic waveguide transducers [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequen cy Control, 2011, 58(1): 156-167. 
[3] BHADWAL N, TORABI MILANI M, COYLE T, et al. Dry coupling of ultrasonic transducer components for high tem perature applications[J]. Sensors, 2019, 19(24): 5383. 
[4] 王刚, 李法新. 基于水平剪切超声导波的高温管道壁 厚在线监测[J]. 无损检测, 2019, 41(9): 1-6, 15. 
WANG G, LI F X. On-line monitoring of high tempera ture pipeline wall thickness based on the shear horizontal ultrasonic guided wave[J]. Nondestructive Testing, 2019, 41(9): 1-6, 15. 
[5] LIAO Z Y, ZHANG X, LIU T Y, et al. Characteristics of high-temperature equipment monitoring using dry-cou pled ultrasonic waveguide transducers[J]. Ultrasonics, 2020, 108: 106236. 
[6] 白雪皎, 祝海江. 高温管道超声波测厚方法影响因素 仿真研究[J]. 计量科学与技术, 2022, 66(2): 55-60. 
BAI X J, ZHU H J. Simulation-based study on factors af fecting ultrasonic thickness measurements of high temper ature pipelines[J]. Metrology Science and Technology, 2022, 66(2): 55-60. 
[7] 王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测 试方法的研究[J]. 郑州大学学报(工学版), 2020, 41(2): 13-18. 
WANG Z, LIU C L, LUO Q H. Research on ultrasonic sensors characteristics and testing method[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (2): 13-18. 
[8] 魏建新, 王椿镛. 横波测试技术的实验室研究[J]. 石油地球物理勘探, 2003, 38(6): 630-635, 708. 
WEI J X, WANG C Y. Study of S-wave test and meas urement technique in laboratory[J]. Oil Geophysical Prospecting, 2003, 38(6): 630-635, 708. 
[9] 郭田雨, 严荣国, 方旭晨, 等. 基于希尔伯特变换和 自适应阈值的R波检测算法[J]. 计算机与现代化, 2022(2): 114-119. 
GUO T Y, YAN R G, FANG X C, et al. Detection of R wave based on Hilbert transform and adaptive threshold [J]. Computer and Modernization, 2022(2): 114-119. 
[10]沙云东, 陈兴武, 栾孝驰, 等. 基于小波包分解-峭度 值指标-希尔伯特包络解调融合方法处理声发射信号 的滚动轴承故障诊断[J]. 科学技术与工程, 2023, 23 (21): 9315-9323. 
SHA Y D, CHEN X W, LUAN X C, et al. Fault diagno sis of rolling bearing based on acoustic emission signal a nalysis by WPD-KI-HED combination method[J]. Sci ence Technology and Engineering, 2023, 23(21): 9315-9323. 
[11]虞雪芬, 叶凌伟, 夏立. 电磁超声检测中高温对横波 声速的影响[J]. 轻工机械, 2015, 33(4): 54-56. 
YU X F, YE L W, XIA L. Influence of high temperature on shear wave velocity of EMAT testing[J]. Light Indus try Machinery, 2015, 33(4): 54-56. 
[12]刘彤, 刘敏珊. 金属材料弹性常数与温度关系的理论 解析[J]. 机械工程材料, 2014, 38(3): 85-89, 95. 
LIU T, LIU M S. Theoretical analysis of the relationship between elastic constants of metals and temperatures[J]. Materials for Mechanical Engineering, 2014, 38(3): 85-89, 95. 
[13]徐志东, 范子亮. 金属材料的弹性模量随温度变化规 律的唯象解释[J]. 西南交通大学学报, 1993, 28 (2): 87-92. 
XU Z D, FAN Z L. A phenomenological explanation of the variation of elastic modulus with temperature for me tallic materials[J]. Journal of Southwest Jiaotong Univer sity, 1993, 28(2): 87-92.

更新日期/Last Update: 2024-06-14