[1]张军锋,胡连超,吴靖江,等.考虑剪切变形的欧拉梁单元一致质量矩阵[J].郑州大学学报(工学版),2024,45(05):128-134.[doi:10.13705/j.issn.1671-6833.2024.05.009]
 ZHANG Junfeng,HU Lianchao,WU Jingjiang,et al.Consistent Mass Matrix of Euler Beam Element including Shear Deformation[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):128-134.[doi:10.13705/j.issn.1671-6833.2024.05.009]
点击复制

考虑剪切变形的欧拉梁单元一致质量矩阵()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年05期
页码:
128-134
栏目:
出版日期:
2024-08-08

文章信息/Info

Title:
Consistent Mass Matrix of Euler Beam Element including Shear Deformation
文章编号:
1671-6833(2024)05-0128-07
作者:
张军锋1 胡连超2 吴靖江2 耿玉鹏3 李 杰1
1. 郑州大学 土木工程学院,河南 郑州 450001;2. 中建七局交通建设有限公司,河南 郑州 450003;3. 河南濮泽高速公路有限公司, 河南 濮阳 457000
Author(s):
ZHANG Junfeng1 HU Lianchao2 WU Jingjiang2 GENG Yupeng3 LI Jie1
1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Communications Construction Company of CSCEC 7th Division Co. , Ltd. , Zhengzhou 450003, China; 3. Henan Puze Expressway Co. , Ltd. , Puyang 457000, China
关键词:
一致质量矩阵 欧拉梁单元 形函数 剪切变形 变截面
Keywords:
the consistent mass matrix Euler beam element shape functions shear deformation tapered elements
分类号:
TU973
DOI:
10.13705/j.issn.1671-6833.2024.05.009
文献标志码:
A
摘要:
为明确考虑剪切变形的欧拉梁单元一致质量矩阵推导方法,以形函数为基础,基于虚功原理,区分伸缩、扭转以及是否考虑剪切变形的弯曲受力状态,给出了欧拉梁单元一致质量矩阵表达式。 研究表明:不考虑剪切变形时,欧拉梁受弯状态的一致质量分析中一般不计单元上微元体水平方向的惯性力,此时仅需弯曲变形引发的竖向位移形函数即可;考虑剪切变形时,则需计入水平方向的惯性力,且同时需要完整的竖向位移形函数和纯弯曲转角位移形函数;对于变截面欧拉梁单元,其一致质量矩阵表达式过于复杂,可在等截面梁的基础上,根据元素位置对矩阵元素匹配左右端或平均截面面积及截面极惯性矩近似给出实用的质量矩阵表达式;考虑剪切变形时,欧拉梁的刚度矩阵亦可经竖向位移和纯弯曲转角位移形函数计算得到,这一过程与使用纯弯曲竖向位移和纯剪切竖向位移形函数的过程在本质上是一致的。
Abstract:
The study was initiated for the consistent mass matrix of Euler beam element including shear deformation. The consistent mass matrix of uniform element was got separately for the uncoupled tension, torsion, and bending conditions, with the shear deformation included or not, based on the shape functions and the virtual work. Itwas shown that the inertia force along the axial direction was always ignored in the mass matrix derivation for thebending condition if the shear deformation was not included, so only the shape functions for vertical deformationwere needed for the bending condition. When the shear deformation was included, the inertia force along the axialdirection must be considered and the shape functions for the section rotation angle due to bending were also requiredbesides the complete shape functions for vertical deformation due to the bending and shear forces. For tapered Eulerelement, the theoretical expression for the consistent mass matrix would be quite complicated and a simple expression was proposed following an approximate strategy, matching the ending or average section areas or polar momentswith the elements in the mass matrix according to their positions. Additionally, the stiffness matrix could also bededuced on the foundation of the complete shape functions for vertical deformation and the shape functions for thesection rotation angle. This derivation procedure was different with the traditional manner superficially but theyshared the same principle essentially.

参考文献/References:

[1] 梁岩, 闫士昌, 赵博洋, 等. 近断层高速铁路刚构桥地震易损性分析[ J] . 郑州大学学报(工学版) , 2022,43(4) : 80-85, 91.

LIANG Y, YAN S C, ZHAO B Y, et al. Seismic fragilityanalysis of rigid frame bridge near-fault high-speed railway [ J] . Journal of Zhengzhou University ( EngineeringScience) , 2022, 43(4) : 80-85, 91.
[2] 杨雅勋, 王成之, 柴文浩, 等. 断索对曲线斜拉桥力学性能的影响 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023,44(5) : 101-107.
YANG Y X, WANG C Z, CHAI W H, et al. Effect ofbroken cable on mechanical properties of curved cablestayed bridge[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(5) : 101-107.
[3] 王勖 成. 有 限 单 元 法 [ M ] . 北 京: 清 华 大 学 出 版社, 2003.
WANG X C. Finite element method[M] . Beijing: Tsinghua University Press, 2003.
[4] 王焕定,焦兆平. 有限单元法基础[M] . 北京: 高等教育出版社, 2002.
WANG H D, JIAO Z P. Fundament of finite elementmethods [M] . Beijing: Higher Education Press, 2002.
[5] 朱伯芳. 有限单元法原理与应用[M] . 4 版. 北京: 中国水利水电出版社, 2018
.ZHU B F. Finite element method theory and applications[M]. 4th ed. Beijing: China Water & Power Press, 2018.
[6] 胡于进, 王璋奇. 有限元分析及应用[ M] . 北京: 清华大学出版社, 2009.
HU Y J, WANG Z Q. Finite element analysis and applications[M] . Beijing: Tsinghua University Press, 2009.
[7] 杜平安, 甘娥忠, 于亚婷. 有限元法———原理、建模及应用[M] . 北京: 国防工业出版社, 2004.
DU P A, GAN E Z, YU Y T. Finite element method———principles, modelling and applications [M] . Beijing: National Defense Industry Press, 2004.
[8] COOK R D, MALKUS, D S, PLESHA M E, et al. Concepts and applications of finite element analysis [ M ] .New York: John Wily & Sons. Inc. , 2002.
[9] ARCHER J S. Consistent mass matrix for distributedmass systems [ J ] . Journal of the Structural Division,1963, 89(4) : 161-178.
[10] ARCHER J S. Consistent matrix formulations for structural analysis using finite-element techniques [ J ] . AIAAJournal, 1965, 3(10) : 1910-1918.
[11] PRZEMIENIECKI J S. Theory of matrix structural analysis [M] . New York: McGraw-Hill, 1968.
[12] 刘瑞岩. 全耦合梁单元的一致质量矩阵[ J] . 国防科技大学学报, 1984, 6(1) : 101-108.
LIU R Y. Consistent mass matrix for complete coupledbeam elements[ J] . Journal of National University of Defense Technology, 1984, 6(1) : 101-108.
[13] 杜柏松, 项海帆, 葛耀君, 等. 剪切效应梁单元刚度和质量矩 阵 的 推 导 及 应 用 [ J] . 重 庆 交 通 大 学 学 报(自然科学版) , 2008, 27(4) : 502-507.
DU B S, XIANG H F, GE Y J, et al. Derivation and application of 3D-beam′s element stiffness and mass matrixwith shear effect[ J] . Journal of Chongqing Jiaotong University (Natural Science) , 2008, 27(4) : 502-507.
[14] 李明瑞. 考虑剪切的梁单元的等效节点载荷和质量矩阵[J]. 北京农业工程大学学报, 1990, 10(2): 85-90.
LI M R. Equivalent nodal load and consistent mass matrixof beam element considering shearing effect[ J] . Journalof Beijing Agricultural Engineering University, 1990, 10(2) : 85-90.
[15] YOKOYAMA T. Vibrations of a hanging Timoshenkobeam under gravity[ J] . Journal of Sound and Vibration,1990, 141(2) : 245-258.
[16] CLOUGH R W, PENZIEN J. Dynamics of structures[M] . New York: McGraw-Hill, 2003.
[17] 张军锋, 尹会娜, 李杰, 等. 欧拉-伯努利梁单元刚度矩阵推导[ J] . 水利与建筑工程学报, 2019, 17( 3) :89-93, 131.
ZHANG J F, YIN H N, LI J, et al. Derivation of element stiffness matrix of Euler-Bernoulli beam element[ J] . Journal of Water Resources and Architectural Engineering, 2019, 17(3) : 89-93, 131.
[18] 张军锋, 尹会娜, 孙大勇, 等. 基于形函数推导考虑剪切变形的欧拉梁单元刚度矩阵[ J] . 重庆交通大学学报(自然科学版) , 2020, 39(9) : 59-66.
ZHANG J F, YIN H N, SUN D Y, et al. Euler beam element stiffness matrix considering shear deformation basedon shape function derivation [ J ] . Journal of ChongqingJiaotong University ( Natural Science ) , 2020, 39 ( 9 ) :59-66.
[19] 张军锋, 李杰, 尹会娜, 等. 考虑剪切变形的变截面欧拉梁单元刚度矩阵[J]. 结构工程师, 2020, 36(2): 43-50.
ZHANG J F, LI J, YIN H N, et al. Element stiffness matrix of tapered Euler beam element including shear deformation[J]. Structural Engineers, 2020, 36(2): 43-50.

更新日期/Last Update: 2024-09-02