[1] International Energy Agency. The future of heat pumps[R]. Paris: IEA, 2022.[2] XIANG X Y, ZHAO X C, JIANG P N, et al. Scenario analysis of hydrofluorocarbons emission reduction in China′s mobile air-conditioning sector[J]. Advances in Climate Change Research, 2022, 13(5): 578-58.
[3] LORENTZEN G, PETTERSEN J. A new, efficient and environmentally benign system for car air-conditioning[J]. International Journal of Refrigeration, 1993, 16(1): 4-12.
[4] QIN X, ZHANG Y X, WANG D B, et al. System development and simulation investigation on a novel compression/ejection transcritical CO2 heat pump system for simultaneous cooling and heating[J]. Energy Conversion and Management, 2022, 259: 115579.
[5] FENG F, ZHANG Z, LIU X F, et al. The influence of internal heat exchanger on the performance of transcritical CO2 water source heat pump water heater[J]. Energies, 2020, 13(7): 1787.
[6] GHAZIZADE-AHSAEE H, AMERI M, BANIASAD ASKARI I. A comparative exergo-economic analysis of four configurations of carbon dioxide direct-expansion geothermal heat pump[J]. Applied Thermal Engineering, 2019, 163: 114347.
[7] AGHAGOLI A, SORIN M. CFD modelling and exergy analysis of a heat pump cycle with Tesla turbine using CO2 as a working fluid[J]. Applied Thermal Engineering, 2020, 178: 115587.
[8] 王迪, 王定标, 杨雨燊, 等. 跨临界CO2热泵系统最优排气压力模拟与实验研究[J]. 郑州大学学报(工学版), 2021, 42(4): 33-39.
WANG D, WANG D B, YANG Y S, et al. Simulation and experimental analyses on the optimal discharge pressure of a transcritical CO2 heat pump system[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4): 33-39.
[9] 胡斌, 李耀宇, 曹锋, 等. 跨临界CO2热泵系统最优排气压力的极值搜索控制[J]. 制冷学报, 2016, 37(3): 81-87.
HU B, LI Y Y, CAO F, et al. Extremum seeking control of discharge pressure optimization for transcritical CO2 heat pump systems[J]. Journal of Refrigeration, 2016, 37(3): 81-87.
[10] WANG W Y, ZHAO Z F, ZHOU Q, et al. Model predictive control for the operation of a transcritical CO2 air source heat pump water heater[J]. Applied Energy, 2021, 300: 117339.
[11] YANG L X, QIN X, ZHAO L H, et al. Analysis and comparison of influence factors of hot water temperature in transcritical CO2 heat pump water heater: an experimental study[J]. Energy Conversion and Management, 2019, 198: 111836.[12] CHEN Y, GU J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. International Journal of Refrigeration, 2005, 28(8): 1238-1249.
[13] QI P C, HE Y L, WANG X L, et al. Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater[J]. Applied Thermal Engineering, 2013, 56(1/2): 120-125.
[14] LIANG X Y, HE Y J, CHENG J H, et al. Difference analysis on optimal high pressure of transcritical CO2 cycle in different applications[J]. International Journal of Refrigeration, 2019, 106: 384-391.
[15] 刘遵超. 二氧化碳车用空调系统气冷器关键技术研究[D]. 郑州: 郑州大学, 2018.LIU Z C. Research on key technology of gas cooler in carbon dioxide automotive air conditioning system[D].Zhengzhou: Zhengzhou University, 2018.
[16] YIN X, CAO F, WANG J, et al. Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network——part A: theoretical modeling[J]. International Journal of Refrigeration, 2019, 106: 549-557.
[17] QIN X, ZHANG F, ZHANG D W, et al. Experimental and theoretical analysis of the optimal high pressure and peak performance coefficient in transcritical CO2 heat pump[J]. Applied Thermal Engineering, 2022, 210: 118372.
[18] KAUF F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles[J]. International Journal of Thermal Sciences, 1999, 38(4): 325-330.
[19] WANG S G, TUO H F, CAO F, et al. Experimental investigation on air-source transcritical CO2 heat pump water heater system at a fixed water inlet temperature[J]. International Journal of Refrigeration, 2013, 36(3): 701-716.
[20] LIAO S M, ZHAO T S, JAKOBSEN A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles[J]. Applied Thermal Engineering, 2000, 20(9): 831-841.
[21] LI C H, JIANG P X, ZHU Y H. Optimal compressor discharge pressure and performance characteristics of transcritical CO2 heat pump for crude oil heating[J]. International Journal of Refrigeration, 2022, 144: 99-107.
[22] POPOV G, LEGUTKO S, KLIMENTOV K, et al. Applying criteria equations in studying the energy efficiency of pump systems[J]. Energies, 2021, 14(17): 5256.
[23] QIN X, LIU H D, MENG X R, et al. A study on the compressor frequency and optimal discharge pressure of the transcritical CO2 heat pump system[J]. International Journal of Refrigeration, 2019, 99: 101-113.
[24] QIN X, ZHANG D W, ZHANG F, et al. Experimental and numerical study on heat transfer of gas cooler under the optimal discharge pressure[J]. International Journal of Refrigeration, 2020, 112: 229-239.
[25] DAI C, QIN X. Experimental study on heating performance and a novel calculation method of water outlet temperature based on air source transcritical CO2 heat pump system[J]. Frontiers in Energy Research, 2022, 10: 888562.
[26] 赵靖华, 陶晶, 解方喜, 等. 用于跨临界CO2汽车空调系统性能优化的控制仿真[J]. 系统仿真学报, 2016, 28(2): 492-497.
ZHAO J H, TAO J, XIE F X, et al. Simulation of performance optimization control about transcritical CO2 automotive air conditioning system[J]. Journal of System Simulation, 2016, 28(2): 492-497.
[27] 王静, 孙西峰, 方健珉, 等. 跨临界CO2汽车空调多PID控制动态性能仿真研究[J]. 西安交通大学学报, 2020, 54(8): 168-176.
WANG J, SUN X F, FANG J M, et al. Dynamic simulation of PID control in transcritical CO2 automobile air conditioning system[J]. Journal of Xi′an Jiaotong University, 2020, 54(8): 168-176.
[28] ZHANG W J, ZHANG C L. A correlation-free on-line optimal control method of heat rejection pressures in CO2 transcritical systems[J]. International Journal of Refrigeration, 2011, 34(4): 844-850.
[29] PEwidth=8,height=11,dpi=110ARROCHA I, LLOPIS R, Twidth=8,height=11,dpi=110RREGA L, et al. A new approach to optimize the energy efficiency of CO2 transcritical refrigeration plants[J]. Applied Thermal Engineering, 2014, 67(1/2): 137-146.
[30] KIM M S, SHIN C S, KIM M S. A study on the real time optimal control method for heat rejection pressure of a CO2 refrigeration system with an internal heat exchanger[J]. International Journal of Refrigeration, 2014, 48: 87-99.
[31] KIM M S, KANG D H, KIM M S, et al. Investigation on the optimal control of gas cooler pressure for a CO2 refrigeration system with an internal heat exchanger[J]. International Journal of Refrigeration, 2017, 77: 48-59.
[32] HU B, LI Y Y, WANG R Z, et al. Real-time minimization of power consumption for air-source transcritical CO2 heat pump water heater system[J]. International Journal of Refrigeration, 2018, 85: 395-408.
[33] RAMPAZZO M, CERVATO A, CORAZZOL C, et al. Energy-efficient operation of transcritical and subcritical CO2 inverse cycles via extremum seeking control[J]. Journal of Process Control, 2019, 81: 87-97.
[34] CUI C, REN J H, SONG Y L, et al. Multi-variable extreme seeking control for efficient operation of sub-cooler vapor injection trans-critical CO2 heat pump water heater[J]. Applied Thermal Engineering, 2021, 184: 116261.
[35] CUI C, ZONG S, SONG Y L, et al. Experimental investigation of the extreme seeking control on a transcritical CO2 heat pump water heater[J]. International Journal of Refrigeration, 2022, 133: 111-122.
[36] CUI C, REN J H, RAMPAZZO M, et al. Real-time energy-efficient operation of a dedicated mechanical subcooling based transcritical CO2 heat pump water heater via multi-input single-output extreme seeking control[J]. International Journal of Refrigeration, 2022, 144: 76-89.
[37] SONG Y L, CAO F. The evaluation of optimal discharge pressure in a water-precooler-based transcritical CO2 heat pump system[J]. Applied Thermal Engineering, 2018, 131: 8-18.
[38] SONG Y L, CAO F. The evaluation of the optimal medium temperature in a space heating used transcritical air-source CO2 heat pump with an R134a subcooling device[J]. Energy Conversion and Management, 2018, 166: 409-423.
[39] MAIER L, SCHÖNEGGE M, HENN S, et al. Assessing mixed-integer-based heat pump modeling approaches for model predictive control applications in buildings[J]. Applied Energy, 2022, 326: 119894.
[40] ESTRADA-FLORES S, MERTS I, DE KETELAERE B, et al. Development and validation of “grey-box” models for refrigeration applications: a review of key concepts[J]. International Journal of Refrigeration, 2006, 29(6): 931-946.
[41] WANG H D, WANG W Y, SONG Y L, et al. Data-driven model predictive control of transcritical CO2 systems for cabin thermal management in cooling mode[J]. Applied Thermal Engineering, 2023, 235: 121337.
[42] WANG L Y, ZHU Y L. Neural-network-based nonlinear model predictive control of multiscale crystallization process[J]. Processes, 2022, 10(11): 2374.
[43] SONG Y L, YANG D F, LI M J, et al. Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network——part B: experimental study[J]. International Journal of Refrigeration, 2019, 106: 248-257.
[44] ZHANG T, CAO F, SONG Y L, et al. The model predictive control strategy of the transcritical CO2 air conditioning system used in railway vehicles[J]. Applied Thermal Engineering, 2023, 218: 119376.
[45] TAHERI S, HOSSEINI P, RAZBAN A. Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: a state-of-the-art review[J]. Journal of Building Engineering, 2022, 60: 105067.
[46] GOTO H, GOTO M, SUEYOSHI T. Consumer choice on ecologically efficient water heaters: marketing strategy and policy implications in Japan[J]. Energy Economics, 2011, 33(2): 195-208.
[47] 武悦, 郑铭铸, 杨坚, 等. 电动汽车CO2热泵系统采暖实验研究及模拟分析[J]. 制冷技术, 2019, 39(5): 33-38.
WU Y, ZHENG M Z, YANG J, et al. Experimental study and simulation analysis on heating performance of CO2 heat pump system for electric vehicles[J]. Chinese Journal of Refrigeration Technology, 2019, 39(5): 33-38.
[48] 中车大连机车研究所有限公司. 一种轨道交通车辆CO2空调系统压力保护控制系统: CN202120260818.2[P]. 2021-11-09.
CRRC Dalian Locomotive. A pressure protection control system for CO2 air conditioning system of rail transit vehicles: CN202120260818.2[P]. 2021-11-09.
[49] 陈威. R744双温超市制冷系统的优化控制研究[D]. 济南: 山东大学, 2020.
CHEN W. Study on optimal control of a R744 two-temperature supermarket refrigeration system[D].Jinan: Shandong University, 2020.
[50] GE Y T, TASSOU S A. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems[J]. International Journal of Refrigeration, 2009, 32(6): 1376-1388.
[51] DADPOUR D, GHOLIZADEH M, ESTIRI M, et al. Multi objective optimization and 3E analyses of a novel supercritical/transcritical CO2 waste heat recovery from a ship exhaust[J]. Energy, 2023, 278: 127843.
[52] YANG D Z, LI Y, XIE J, et al. Energetic and entropy analysis of a novel transcritical CO2 two-stage compression/ejector refrigeration cycle for shipboard cold chamber[J]. Thermal Science, 2023, 27(4): 2607-2621.
[53] SUN G, CHEN J L, YONG Y Q, et al. Generalized predictive control of spacecraft attitude with adaptive predictive period[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(3): 596-606.
[54] HU Z, ZHANG J F, XIE L, et al. A generalized predictive control for remote cardiovascular surgical systems[J]. ISA Transactions, 2020, 104: 336-344.
[55] CHEN Z, CUI J L, LEI Z Z, et al. Design of an improved implicit generalized predictive controller for temperature control systems[J]. IEEE Access, 2020, 8: 13924-13936.
[56] HAN G, JOO H J, LIM H W, et al. Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost[J]. Energy, 2023, 270:126913.
[57] WANG Y C, FENG H R, XI X Y. Monitoring and autonomous control of Beijing Subway HVAC system for energy sustainability[J]. Energy for Sustainable Development, 2017, 39: 1-12.
[58] WANG Y Q, RAO, Z H, LIU J X, et al. An optimized control strategy for integrated solar and air-source heat pump water heating system with cascade storage tanks[J]. Energy and Buildings, 2020,210:109766.
[59] HAN Z W, BAI C G, MA X, et al. Study on the performance of solar-assisted transcritical CO2 heat pump system with phase change energy storage suitable for rural houses[J]. Solar Energy, 2018, 174: 45-54.