QI D L, HAN Y F, ZHOU Z Q, et al. Review of defect detection technology of power equipment based on video images[J]. Journal of Electronics & Information Technol ogy, 2022, 44(11): 3709-3720. [2] 何国立, 齐冬莲, 闫云凤. 一种基于关键点检测和注 意力机制的违规着装识别算法及其应用[J]. 中国电 机工程学报, 2022, 42(5): 1826-1837.
HE G L, QI D L, YAN Y F. An illegal dress recognition algorithm based on key-point detection and attention mechanism and its application[J]. Proceedings of the CSEE, 2022, 42(5): 1826-1837.
[3] GIRSHICK R. Fast R-CNN[C]∥2015 IEEE Internation al Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448.
[4] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备 红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13 (12): 79-84.
LI W P, XIE K, LIAO X, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84.
[5] 林刚, 王波, 彭辉, 等. 基于改进Faster-RCNN的输电 线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218.
LIN G, WANG B, PENG H, et al. Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J]. Electric Power Automa tion Equipment, 2019, 39(5): 213-218.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recogni tion (CVPR). Piscataway: IEEE, 2016: 779-788.
[7] 朱惠玲, 牛哲文, 黄克灿, 等. 基于单阶段目标检测 算法的变电设备红外图像目标识别及定位[J]. 电力 自动化设备, 2021, 41(8): 217-224.
ZHU H L, NIU Z W, HUANG K C, et al. Identification and location of infrared image for substation equipment based on single-stage object detection algorithm[J]. Electric Power Automation Equipment, 2021, 41(8): 217-224.
[8] 陈婷, 周旻, 韩勤, 等. 基于改进YOLOv4的变电站缺 陷检测[J]. 计算机系统应用, 2022, 31(6): 245-251.
CHEN T, ZHOU M, HAN Q, et al. Defect detection for substation based on improved YOLOv4[J]. Computer Systems and Applications, 2022, 31(6): 245-251.
[9] 王佰川, 王聪. 基于改进YOLOv4的配电线路绝缘子 与避雷器快速检测研究[J]. 电瓷避雷器, 2023(3): 166-174.
WANG B C, WANG C. Rapid detection of insulators and arrester on distribution lines based on improved YOLOv4 [J]. Insulators and Surge Arresters, 2023(3): 166-174.
[10]肖粲俊, 潘睿志, 李超, 等. 基于改进YOLOv5s绝缘 子缺陷检测技术研究[J]. 电子测量技术, 2022, 45 (24): 137-144.
XIAO C J, PAN R Z, LI C, et al. Research on defect detection technology based on improved YOLOv5s insula tor[J]. Electronic Measurement Technology, 2022, 45 (24): 137-144.
[11] CAI H, LI J Y, HU M Y, et al. EfficientViT: multi scale linear attention for high-resolution dense prediction [EB/OL]. (2022-05-29)[2024-02-10]. http:∥arx iv.org/abs/2205.14756.
[12] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]∥International Conference on Ma chine Learning. New York: ACM, 2022:11863-11874.
[13] BODLA N, SINGH B, CHELLAPPA R, et al. Soft NMS—improving object detection with one line of code [C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 5562-5570.
[14]郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特 征融合的YOLOv5输电线路故障检测[J]. 中国电机 工程学报, 2023, 43(6): 2319-2331.
HAO S, YANG L, MA X, et al. YOLOv5 transmission line fault detection based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2023, 43(6): 2319-2331.
[15]曾耀, 高法钦. 基于改进YOLOv5的电子元件表面缺 陷检测算法[J]. 浙江大学学报(工学版), 2023, 57 (3): 455-465.
ZENG Y, GAO F Q. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(3): 455-465.
[16] LIU X Y, PENG H W, ZHENG N X, et al. Effi cientViT: memory efficient vision transformer with casca ded group attention[EB/OL]. (2023-05-11)[2024-02-10]. http:∥arxiv.org/abs/2305.07027.
[17]张森, 万吉林, 王慧芳, 等. 基于注意力机制的卷积 神经网络指针式仪表图像读数识别方法[J]. 电力自 动化设备, 2022, 42(4): 218-224.
ZHANG S, WAN J L, WANG H F, et al. Convolutional neural network based on attention mechanism for reading recognition of pointer-type meter images[J]. Electric Power Automation Equipment, 2022, 42(4): 218-224.
[18]宁纪锋, 林靖雅, 杨蜀秦, 等. 基于改进YOLO v5s的 奶山羊面部识别方法[J]. 农业机械学报, 2023, 54 (4): 331-337.
NING J F, LIN J Y, YANG S Q, et al. Face recognition method of dairy goat based on improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Ma chinery, 2023, 54(4): 331-337.
[19]高新阳, 魏晟, 温志庆, 等. 改进YOLOv5轻量级网 络的柑橘检测方法[J]. 计算机工程与应用, 2023, 59 (11): 212-221.
GAO X Y, WEI S, WEN Z Q, et al. Citrus detection method based on improved YOLOv5 lightweight network [J]. Computer Engineering and Applications, 2023, 59 (11): 212-221.
[20]刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检 图像目标检测方法[J]. 电力系统自动化, 2019, 43 (13): 162-168.
LIU S Y, WANG B, GAO K L, et al. Object detection method for aerial inspection image based on region-based fully convolutional network[J]. Automation of Electric Power Systems, 2019, 43(13): 162-168.
[21]唐靓, 余明慧, 武明虎, 等. 基于改进YOLOv5的绝 缘子缺陷检测算法[J]. 华中师范大学学报(自然科 学版), 2022, 56(5): 771-780.
TANG J, YU M H, WU M H, et al. Insulator defect de tection algorithm based on improved YOLOv5[J]. Jour nal of Central China Normal University (Natural Sci ences), 2022, 56(5): 771-780.
[22] JIN Y, GAO H F, FAN X L, et al. Defect identification of adhesive structure based on DCGAN and YOLOv5[J]. IEEE Access, 2022, 10: 79913-79924.
[23]秦晓辉, 黄启东, 常灯祥, 等. 基于改进YOLOv5的 露天矿山目标检测方法[J]. 湖南大学学报(自然科 学版), 2023, 50(2): 23-30.
QIN X H, HUANG Q D, CHANG D X, et al. Object de tection method in open-pit mine based on improved YOLOv5[J]. Journal of Hunan University (Natural Sci ences), 2023, 50(2): 23-30.