[1]杨守义,陈怡航,张双玲,等.面向未来移动通信的移动边缘计算研究综述[J].郑州大学学报(工学版),2024,45(04):1-10.[doi:10.13705/ j.issn.1671-6833.2024.04.016]
 YANG Shouyi,CHEN Yihang,ZHANG Shuangling,et al.Research of Mobile Edge Computing for Future Mobile Communications: A Review[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):1-10.[doi:10.13705/ j.issn.1671-6833.2024.04.016]
点击复制

面向未来移动通信的移动边缘计算研究综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
1-10
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
Research of Mobile Edge Computing for Future Mobile Communications: A Review
文章编号:
1671-6833(2024)04-0001-10
作者:
杨守义1 陈怡航1 张双玲2 韩昊锦1 李光远3 郝万明1
1,郑州大学 电气与信息工程学院,河南 郑州 450001;2.河南轻工职业学院 机电工程系, 河南 郑州 450002;3.黄河科技学院 工学部,河南 郑州 450061
Author(s):
YANG Shouyi1 CHEN Yihang1 ZHANG Shuangling2 HAN Haojin1 LI Guangyuan3 HAO Wanming1
1.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Department of Mechanical and Electrical Engineering, Henan Light Industry Vocational College, Zhengzhou 450002, China; 3.Department of Engineering, Huanghe University of Science and Technology, Zhengzhou 450061, China
关键词:
移动通信 移动边缘计算 计算卸载 资源分配 信息安全
Keywords:
mobile communication mobile edge computing computation offloading resource allocation informa tion security
分类号:
TN929.5
DOI:
10.13705/ j.issn.1671-6833.2024.04.016
文献标志码:
A
摘要:
移动边缘计算(MEC)通过将移动终端的计算和存储任务从集中式数据中心卸载到边缘网格,满足复杂通 信场景下的多样化设备服务需求,已经成为面向未来通信的关键性技术之一。通过阐述从云计算、雾计算到移动 边缘计算的发展历程,介绍了MEC技术的基本概念和基本框架;在此基础上,从计算卸载、资源分配、缓存管理和 安全防护4个方面讨论了MEC的研究进展,对相关研究成果进行了详尽综述。其次,以物联网、MEC结合区块链、 AI辅助MEC系统、通感一体化和云边协同等边缘计算的几个典型应用场景为例,归纳了移动边缘计算在6G中的 潜在应用场景,展示了其在构成智能、高效、安全的通信网络方面的潜在益处。最后,从互操作性、安全风险、移动 性管理和可扩展性等方面指出了MEC研究在融合创新方面所面临的挑战,并对其在超可靠低时延通信、通感算一 体化和星地融合移动通信等方向的优势和发展趋势进行了总结和展望。
Abstract:
Mobile edge computing (MEC) has become one of the key technologies for future-oriented communica tions by offloading the computing and storage tasks of mobile terminals from centralized data centers to edge grids to satisfy the diverse device service demands in complex communication scenarios. The basic concept and basic frame work of MEC technology were introduced by describing the development history from cloud computing, fog compu ting to mobile edge computing. On this basis, the research progress of MEC was discussed in four aspects, namely, computation offloading, resource allocation, cache management, and security protection. A detailed overview of the relevant research results was provided. Then, studies on several typical application scenarios of edge computing such as IoT, MEC combined with blockchain, AI-assisted MEC systems, integrated sensing and communication, and cloud-edge collaboration were summarized. It demonstrated the potential benefits of MEC in 6G in terms of con stituting an intelligent, efficient and secure communication network. Finally, the challenges faced by MEC research in convergence innovation from the aspects of interoperability, security risk, mobility management and scalability were pointed out, as well as the advantages and development trends in the directions of ultra-reliable low-latency communications, communication-sensing-computing integration and satellite-ground fusion mobile communication. The development trend of it in the future mobile communication was also summarized and outlooked.

参考文献/References:

[1] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: pav ing the last mile of artificial intelligence with edge compu ting[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762.

[2] TABATABAEE MALAZI H, CHAUDHRY S R, KAZMI A, et al. Dynamic service placement in multi-access edge computing: a systematic literature review[J]. IEEE Ac cess, 2022, 10: 32639-32688. 
[3] 段文雪, 胡铭, 周琼, 等. 云计算系统可靠性研究综 述[J]. 计算机研究与发展, 2020, 57(1): 102-123. 
DUAN W X, HU M, ZHOU Q, et al. Reliability in cloud computing system: a review[J]. Journal of Computer Re search and Development, 2020, 57(1): 102-123. 
[4] HASHIZUME K, ROSADO D G, FERNÁNDEZ-MEDI NA E, et al. An analysis of security issues for cloud com puting[J]. Journal of Internet Services and Applications, 2013, 4(1): 1-13. 
[5] BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the Internet of Things[C]∥Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. New York: ACM, 2012: 13-16. 
[6] YI S H, LI C, LI Q. A survey of fog computing: con cepts, applications and issues[C]∥Proceedings of the 2015 Workshop on Mobile Big Data. New York:ACM, 2015: 37-42. 
[7] SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Jour nal, 2016, 3(5): 637-646.
[8] FIRDHOUS M, GHAZALI O, HASSAN S, et al. Fog computing: will it be the future of cloud computing? [C] ∥ The Third International Conference on Informatics & Applications. Piscataway: IEEE, 2014: 8-15. 
[9] MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656. 
[10] JUNG H, YI J H. A unified framework issue for 5G MEC deployment[C]∥2021 International Conference on Infor mation and Communication Technology Convergence (IC TC). Piscataway: IEEE, 2021: 1507-1509. 
[11] CHEN M, HAO Y X. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587-597. 
[12] REN J K, YU G D, CAI Y L, et al. Partial offloading for latency minimization in mobile-edge computing[C]∥ IEEE Global Communications Conference 2017. Piscat away: IEEE, 2017: 1-6.
[13] YANG G S, HOU L, HE X Y, et al. Offloading time op timization via Markov decision process in mobile-edge computing[J]. IEEE Internet of Things Journal, 2021, 8 (4): 2483-2493. 
[14] SUN Z C, MO Y J, YU C. Graph-reinforcement-learn ing-based task offloading for multiaccess edge computing [J]. IEEE Internet of Things Journal, 2023, 10(4): 3138-3150. 
[15] SHI Y, CHEN S Z, XU X. MAGA: a mobility-aware computation offloading decision for distributed mobile cloud computing[J]. IEEE Internet of Things Journal, 2018, 5(1): 164-174. 
[16]WANG B, LIU Y Q, SHOU G C, et al. Energy con sumption minimization using data compression in mobile edge computing[C]∥2020 IEEE/CIC International Con ference on Communications in China. Piscataway: IEEE, 2020: 911-916.
[17] CHEN Y, ZHANG N, ZHANG Y C, et al. Energy effi cient dynamic offloading in mobile edge computing for In ternet of Things[J]. IEEE Transactions on Cloud Compu ting, 2021, 9(3): 1050-1060. 
[18] XU X L, HE C X, XU Z Y, et al. Joint optimization of offloading utility and privacy for edge computing enabled IoT[J]. IEEE Internet of Things Journal, 2020, 7(4): 2622-2629. 
[19] DENG X H, SUN Z H, LI D, et al. User-centric compu tation offloading for edge computing[J]. IEEE Internet of Things Journal, 2021, 8(16): 12559-12568. 
[20]WAN S H, LI X, XUE Y, et al. Efficient computation offloading for Internet of Vehicles in edge computing-as sisted 5G networks[J]. The Journal of Supercomputing, 2020, 76(4): 2518-2547. 
[21]李云, 高倩, 姚枝秀, 等. 移动边缘计算中智能服务 编排和算网资源分配联合优化方法[J]. 通信学报, 2023, 44(7): 51-63. 
LI Y, GAO Q, YAO Z X, et al. Joint optimization meth od of intelligent service arrangement and computing-net working resource allocation for MEC[J]. Journal on Com munications, 2023, 44(7): 51-63. 
[22] XING H, LIU L, XU J, et al. Joint task assignment and resource allocation for D2D-enabled mobile-edge compu ting[J]. IEEE Transactions on Communications, 2019, 67(6): 4193-4207. 
[23] SUN L, WANG J, LIN B. Task allocation strategy for MEC-enabled IIoTs via Bayesian network based evolution ary computation[J]. IEEE Transactions on Industrial In formatics, 2021, 17(5): 3441-3449. 
[24] TENG Y L, CHENG K, ZHANG Y, et al. Mixed-times cale joint computational offloading and wireless resource allocation strategy in energy harvesting multi-MEC server systems[J]. IEEE Access, 2019, 7: 74640-74652. 
[25] LIU B H, LIU C X, PENG M G. Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT net works[J]. IEEE Journal on Selected Areas in Communi cations, 2021, 39(4): 1015-1027. 
[26] MAHMUD R, SRIRAMA S N, RAMAMOHANARAO K, et al. Quality of Experience (QoE)-aware placement of applications in Fog computing environments[J]. Journal of Parallel and Distributed Computing, 2019, 132: 190-203. 
[27] MAHMUD R, SRIRAMA S N, RAMAMOHANARAO K, et al. Profit-aware application placement for integrated Fog-Cloud computing environments[J]. Journal of Paral lel and Distributed Computing, 2020, 135: 177-190. 
[28] LI S Y, HUANG J W, HU J, et al. QoE-DEER: a QoE aware decentralized resource allocation scheme for edge computing[J]. IEEE Transactions on Cognitive Commu nications and Networking, 2022, 8(2): 1059-1073. 
[29] ZHANG Y, HOSSAIN M S, GHONEIM A, et al. COC ME: content-oriented caching on the mobile edge for wireless communications[J]. IEEE Wireless Communica tions, 2019, 26(3): 26-31. 
[30] ZHANG J, HU X P, NING Z L, et al. Joint resource al location for latency-sensitive services over mobile edge computing networks with caching[J]. IEEE Internet of Things Journal, 2019, 6(3): 4283-4294. 
[31] MENG X L, WANG W, WANG Y T, et al. Closed-form delay-optimal computation offloading in mobile edge com puting systems[J]. IEEE Transactions on Wireless Com munications, 2019, 18(10): 4653-4667. 
[32] YANG S, LIU J T, ZHANG F, et al. Caching-enabled computation offloading in multi-region MEC network via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(21): 21086-21098. 
[33] STHAPIT S, THOMPSON J, ROBERTSON N M, et al. Computational load balancing on the edge in absence of cloud and fog[J]. IEEE Transactions on Mobile Compu ting, 2019, 18(7): 1499-1512. 
[34] ALE L H, ZHANG N, WU H C, et al. Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network[J]. IEEE Internet of Things Journal, 2019, 6(3): 5520-5530. 
[35]WANG H M, LI Y X, ZHAO X Q, et al. An algorithm based on Markov chain to improve edge cache hit ratio for blockchain-enabled IoT[J]. China Communications, 2020, 17(9): 66-76. 
[36] SAPUTRA Y M, HOANG D T, NGUYEN D N, et al. Distributed deep learning at the edge: a novel proactive and cooperative caching framework for mobile edge net works[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1220-1223. 
[37] ZHENG Z J, SONG L Y, HAN Z, et al. A Stackelberg game approach to proactive caching in large-scale mobile edge networks[J]. IEEE Transactions on Wireless Com munications, 2018, 17(8): 5198-5211. 
[38] SUFYAN F, BANERJEE A. Computation offloading for dis tributed mobile edge computing network: a multiobjective approach[J]. IEEE Access, 2020, 8: 149915-149930. 
[39]WANG J P, WANG M F, ZHANG Z Y, et al. Toward a trust evaluation framework against malicious behaviors of industrial IoT[J]. IEEE Internet of Things Journal, 2022, 9(21): 21260-21277. 
[40] IFTIKHAR A, QURESHI K N, ALTALBE A A, et al. Security provision by using detection and prevention meth ods to ensure trust in edge-based smart city networks[J]. IEEE Access, 2023, 11: 137529-137547. 
[41] HOUDA Z A E, BRIK B, KSENTINI A, et al. A MEC based architecture to secure IoT applications using federa ted deep learning[J]. IEEE Internet of Things Magazine, 2023, 6(1): 60-63. 
[42] GYAMFI E, JURCUT A D. Novel online network intru sion detection system for industrial IoT based on OI-SVDD and AS-ELM[J]. IEEE Internet of Things Journal, 2023, 10(5): 3827-3839. 
[43] HAN X, TIAN D X, ZHOU J S, et al. Privacy-preser ving proxy re-encryption with decentralized trust manage ment for MEC-empowered VANETs[J]. IEEE Transac tions on Intelligent Vehicles, 2023, 8(8): 4105-4119. 
[44] MADDIKUNTA P K R, PHAM Q V, NGUYEN D C, et al. Incentive techniques for the Internet of Things: a sur vey[J]. Journal of Network and Computer Applications, 2022, 206: 103464. 
[45] MURSIA P, SCIANCALEPORE V, GARCIA-SAAVE DRA A, et al. RISMA: reconfigurable intelligent sur faces enabling beamforming for IoT massive access[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1072-1085.
[46] AAZAM M, ZEADALLY S, HARRAS K A. Deploying fog computing in industrial Internet of Things and industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4674-4682. 
[47] HEWA T, GÜR G, KALLA A, et al. The role of block chain in 6G: challenges, opportunities and research di rections[C]∥2020 2nd 6G Wireless Summit (6G SUM MIT). Piscataway: IEEE, 2020: 1-5. 
[48] ZHU Y X, ZHENG G, WONG K K. Blockchain-empow ered decentralized storage in air-to-ground industrial net works[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3593-3601. 
[49]WANG K Y, TU Z Y, JI Z Z, et al. Faster service with less resource: a resource efficient blockchain framework for edge computing[J]. Computer Communications, 2023, 199: 196-209. 
[50] TULKINBEKOV K, KIM D H. Blockchain-enabled ap proach for big data processing in edge computing[J]. IEEE Internet of Things Journal, 2022, 9(19): 18473-18486. 
[51] CAO J, MA M D, LI H, et al. A survey on security as pects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170-195. 
[52] QI Q, CHEN X M, KHALILI A, et al. Integrating sens ing, computing, and communication in 6G wireless net works: design and optimization[J]. IEEE Transactions on Communications, 2022, 70(9): 6212-6227. 
[53]刘昊, 张景超, 毛万登, 等. 智慧换流站云边协同数 据交互方法[J]. 郑州大学学报(工学版), 2022, 43 (5): 104-110. 
LIU H, ZHANG J C, MAO W D, et al. Cloud edge col laboration data interaction method of intelligent converter station[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(5): 104-110. 
[54]伏玉笋, 杨根科. 无线超可靠低时延通信:关键设计 分析与挑战[J]. 通信学报, 2020, 41(8): 187-203. 
FU Y S, YANG G K. Wireless ultra-reliable and low-laten cy communication: key design analysis and challenge[J]. Journal on Communications, 2020, 41(8): 187-203. 
[55] LIN W W, HUANG T S, LI X, et al. Energy-efficient computation offloading for UAV-assisted MEC: a two stage optimization scheme[J]. ACM Transactions on In ternet Technology, 2022, 22(1): 1-23.

更新日期/Last Update: 2024-06-13