[1]窦 明,闫佳佳,王 偲,等.LID设施布局对城市径流与污染负荷影响评估[J].郑州大学学报(工学版),2024,45(04):87-94.[doi:10.13705/ j.issn.1671-6833.2024.04.012]
 DOU Ming,YAN Jiajia,WANG Cai,et al.Assessment of the Impact of LID Facility Layout on Urban Runoff and Pollution Loads[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):87-94.[doi:10.13705/ j.issn.1671-6833.2024.04.012]
点击复制

LID设施布局对城市径流与污染负荷影响评估()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
87-94
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
Assessment of the Impact of LID Facility Layout on Urban Runoff and Pollution Loads
文章编号:
1671-6833(2024)04-0087-08
作者:
窦 明1 闫佳佳1 王 偲2 关 健3 李桂秋1 侯进进4
1.郑州大学 生态与环境学院,河南 郑州 450001;2.江苏省水文水资源勘测局 南通分局,江苏 南通 226006;3.河南省自然资源监测和国土整治院,河南 郑州 450018;4.水利部长江水利委员会 长江科学院,湖北 武汉 430012
Author(s):
DOU Ming1 YAN Jiajia1 WANG Cai2 GUAN Jian3 LI Guiqiu1 HOU Jinjin4
1. School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; 2. Nantong Branch,Jiangsu Province Hy drology and Water Resources Investigation Bureau, Nantong 226006, China; 3. Institute of Natural Resources Monitoring and Compre hensive Land Improvement of Henan Province, Zhengzhou 450018, China; 4. Changjiang Water Resources Commission of the Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430012, China
关键词:
SWMM模型 LID设施空间布局 径流总量削减率 管段超载 TSS负荷削减率
Keywords:
SWMM model spatial layout of LID facility total runoff reduction rate pipe section overload TSS load reduction rate
分类号:
X321
DOI:
10.13705/ j.issn.1671-6833.2024.04.012
文献标志码:
A
摘要:
关于低影响开发(LID)空间布局对水量水质控制效果影响的研究较为缺乏。针对上述问题,以郑州市中 原区为对象,基于SWMM模型原理构建布设LID设施的研究区城市水量水质模型。所提模型依据城市综合径流 系数的经验值以及研究区实际情况,将中原区划分为城市建筑高、中、低密集区,并在研究区高、中、低密集子汇水 区布设不同比例的LID设施(S1~S5),计算不同雨量级别下不同空间格局下的LID设施对水量水质的控制效果。 结果表明:随着雨量级别的增大,LID方案的径流总量削减率、峰值流量削减率和TSS负荷削减率不断减小。在降 雨级别为暴雨、大雨和中雨时,在高、中、低密集子汇水区布设占比分别为35%、35%和30%的LID方案(S5),其径 流总量削减率超过80%,峰值流量削减率超过70%,且TSS负荷削减率超过50%。从各事件下水量与水质综合指 标评估来看,该方案表现最佳。
Abstract:
In view of the lack of studies on the impact of low impact development (LID) spatial layout on the con trol effect of water quantity and quality, Zhongyuan District of Zhengzhou City as a target area, its urban water quantity and quality model with LID facilities was built based on SWMM model principle. Based on the empirical value of urban comprehensive runoff coefficient and the actual situation of the area, Zhongyuan District was divided into high, medium and low-density areas of urban buildings, and different proportions of LID (S1-S5) were de ployed in the high, medium and low-density urban areas, and the control effect of different spatial patterns of LID facilities on water quantity and quality under different rainfall levels was calculated. The results showed that with the increase of rainfall level, the total runoff reduction rate, peak flow reduction rate and TSS load reduction rate of LID scheme continued to decrease. When rainfall levels were rainstorm, heavy rain and moderate rain, LID scheme (S5) with a proportion of 35%, 35% and 30% were deployed in high, medium and low dense urban areas, and the total runoff reduction rate exceeded 80%, the peak flow reduction rate exceeded 70%, and the TSS load reduc tion rate exceeded 50%. From the comprehensive index evaluation of water quantity and water quality in each e vent, the program had the best performance.

参考文献/References:

[1] DELL T, RAZZAGHMANESH M, SHARVELLE S, et al. Development and application of a SWMM-based simu lation model for municipal scale hydrologic assessments [J]. Water, 2021, 13(12): 1644. 

[2] LENG L Y, MAO X H, JIA H F, et al. Performance as sessment of coupled green-grey-blue systems for Sponge City construction[J]. The Science of the Total Environ ment, 2020, 728: 138608. 
[3] AHIABLAME L M, ENGEL B A, CHAUBEY I. Effectiveness of low impact development practices: literature review and suggestions for future research[J]. Water, Air, & Soil Pollution, 2012, 223(7): 4253-4273. 
[4] 周昕, 高玉琴, 吴迪. 不同LID设施组合对区域雨洪 控制效果的影响模拟[J]. 水资源保护, 2021, 37 (3): 26-31, 73. 
ZHOU X, GAO Y Q, WU D. Simulation on influence of regional rain-flood control effect under different combina tions of LID measures[J]. Water Resources Protection, 2021, 37(3): 26-31, 73. 
[5] 戎贵文, 甘丹妮, 李姗姗, 等. 不同LID设施的面积 比例优选及径流污染控制效果[J]. 水资源保护, 2022, 38(3): 168-173, 204. 
RONG G W, GAN D N, LI S S, et al. Area proportion optimization of different LID facilities and effect of runoff pollution control[J]. Water Resources Protection, 2022, 38(3): 168-173, 204. 
[6] 王婷, 刁秀媚, 刘俊, 等. 基于SWMM的老城区LID 布设比例优化研究[J]. 南水北调与水利科技, 2017, 15(4): 39-43, 128. 
WANG T, DIAO X M, LIU J, et al. Optimization of LID layout proportions in old city area based on SWMM[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(4): 39-43, 128. 
[7] ECKART K, MCPHEE Z, BOLISETTI T. Multiobjective optimization of low impact development stormwater con trols[J]. Journal of Hydrology, 2018, 562: 564-576. 
[8] 黄铁兰, 刘志航, 柯锦灿. 基于暴雨管理模型的广州 某城市住区的低影响开发规划[J]. 人民珠江, 2018, 39(8): 99-105. 
HUANG T L, LIU Z H, KE J C. Planning of low impact development of an urban residential district in Guangzhou based on SWMM[J]. Pearl River, 2018, 39(8): 99-105. 
[9] 杜颖恩, 侯精明, 马红丽, 等. 基于SWMM的LID设 施空间格局优化模拟研究[J]. 中国给水排水, 2021, 37(19): 120-125. 
DU Y E, HOU J M, MA H L, et al. Spatial pattern opti mization of LID facility based on SWMM[J]. China Wa ter & Wastewater, 2021, 37(19): 120-125. 
[10]张金萍, 张朝阳, 左其亭. 极端暴雨下城市内涝模拟 与应急响应能力评估[J]. 郑州大学学报(工学版), 2023, 44(2): 30-37. 
ZHANG J P, ZHANG Z Y, ZUO Q T. Urban waterlog ging simulation and emergency response capacity evalua tion with extreme rainstorms[J]. Journal of Zhengzhou U niversity (Engineering Science), 2023, 44(2): 30-37. 
[11]张士官, 吕谋, 焦春蛟, 等. 雨洪管理模型SWMM原 理解析及应用进展[J]. 人民珠江, 2019, 40(12): 37-42, 69. 
ZHANG S G, LYU M, JIAO C J, et al. Principle analysis and application progress of storm water management model (SWMM)[J]. Pearl River, 2019, 40(12): 37-42, 69. 
[12]赵月, 张建丰, 李涛, 等. 降雨径流模型的参数敏感 性分析与方法比较[J]. 中国给水排水, 2021, 37 (7): 114-120. 
ZHAO Y, ZHANG J F, LI T, et al. Parameter sensitivity a nalysis and method comparison of rainfall runoff model[J]. China Water & Wastewater, 2021, 37(7): 114-120. 
[13]刘兴坡. 基于径流系数的城市降雨径流模型参数校准 方法[J]. 给水排水, 2009, 45(11): 213-217. 
LIU X P. Parameter calibration method for urban rainfall runoff model based on runoff coefficient[J]. Water & Wastewater Engineering, 2009, 45(11): 213-217. 
[14]杨默远, 潘兴瑶, 刘洪禄, 等. 基于文献数据再分析 的中国城市面源污染规律研究[J]. 生态环境学报, 2020, 29(8): 1634-1644. 
YANG M Y, PAN X Y, LIU H L, et al. Urban non point pollution characteristics in China: a meta-analysis [J]. Ecology and Environmental Sciences, 2020, 29 (8): 1634-1644. 
[15]孙康. 基于SWMM模型的海绵城市应用研究: 以沣西 新城为例[D]. 西安: 西安工业大学, 2023. 
SUN K. Research on the application of SWMM model in sponge city: a case study of Fengxi New City[D].Xi’an: Xi’an Technological University, 2023. 
[16]中华人民共和国住房和城乡建设部. 室外排水设计标 准: GB 50014—2021[S].北京: 中国计划出版 社, 2021. 
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Standard for Design of Out door Wastewater engineering:GB 50014—2021[S]. Bei jing: China Planning Press, 2021. 
[17]常晓栋, 徐宗学, 赵刚, 等. 基于SWMM模型的城市 雨洪模拟与LID效果评价: 以北京市清河流域为例 [J]. 水力发电学报, 2016, 35(11): 84-93. 
CHANG X D, XU Z X, ZHAO G, et al. Urban rainfall runoff simulations and assessment of low impact develop ment facilities using SWMM model: a case study of Qing he catchment in Beijing[J]. Journal of Hydroelectric En gineering, 2016, 35(11): 84-93. 
[18] KONG F H, BAN Y L, YIN H W, et al. Modeling storm water management at the city district level in response to changes in land use and low impact development[J]. En vironmental Modelling & Software, 2017, 95: 132-142. 
[19]刘华祥. 城市暴雨径流面源污染影响规律研究[D]. 武汉: 武汉大学, 2005. 
LIU H X. The impact study on urban storm non-point source pollution[D].Wuhan: Wuhan University, 2005.

更新日期/Last Update: 2024-06-14