[1]沈超,张艺哲,杨建中,等.电动汽车驱动电机冷却流道性能的数值模拟研究[J].郑州大学学报(工学版),2021,42(06):69-74.[doi:10.13705/j.issn.1671-6833.2021.05.017]
 Shen Chao,Zhang Yizhe,Yang Jianzhong,et al.Numerical Research on Optimal Design of Cooling Channels for Driving Motors of Electric Vehicles[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):69-74.[doi:10.13705/j.issn.1671-6833.2021.05.017]
点击复制

电动汽车驱动电机冷却流道性能的数值模拟研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年06期
页码:
69-74
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Numerical Research on Optimal Design of Cooling Channels for Driving Motors of Electric Vehicles
作者:
沈超张艺哲杨建中李欢张东伟
郑州大学土木工程学院;郑州大学机械与动力工程学院;
Author(s):
Shen Chao; Zhang Yizhe; Yang Jianzhong; Li Huan; Zhang Dongwei;
School of Civil Engineering, Zhengzhou University; School of Mechanical and Power Engineering, Zhengzhou University;
关键词:
Keywords:
motor cooling Fluent enhanced heat transfer channel pressure channel structure
DOI:
10.13705/j.issn.1671-6833.2021.05.017
文献标志码:
A
摘要:
温度对电动汽车电机的寿命具有重要影响。本文针对四种不同功率电动汽车驱动电机的散热问题,建立了机壳内部流体流动与换热的三维模型,基于Fluent软件对两种散热方案下的流动和温度分布进行计算,对比分析了两种不同流道结构在不同驱动功率下内壁面最高温度和流道压力分布。结果显示电机功率为80 kW和90 kW的时候,两种流道结构均能满足散热要求,但六通道流道结构具有更好的散热效果。当电机功率超过100 kW的时候,只有六通道流道结构的机壳能够满足散热要求。四通道周向“Z”字型流道结构的机壳,在冷却过程中,流道的压力损失较小,对机壳的承压能力要求不高,因此在较低功率的驱动电机冷却方案中可以优先选用四通道周向“Z”字型结构。
Abstract:
To explore the influence of channel structure on the heat dissipation effect of electric vehicle drive motor of four different powers, the three-dimensional model of fluid flow and heat transfer in the shell was established. Fluent simulation was employed to calculate the flow field and temperature field of two different channel structure drive motors of different power. The results showed that only the six-channel structure could supply the demand of the heat dissipation when the motor power was more than 100 kW. When the motor power was 80 kW and 90 kW, the maximum temperature of the inner wall surface of the four-channel structure was 12.05% and 12.48% higher than that of the six-channel structure, respectively. At this time, the two kinds of channel structure could meet the heat dissipation requirement, but the pressure loss of the four-channel structure was 61.87% and 61.38% lower than that of the six-channel structure under the two kinds of power, respectively. Therefore, considering the difficulty of processing and the pressure bearing capacity of the shell, the four-channel circumferential "Z" shape structure should be preferred at lower power.

参考文献/References:

[1] 刘蕾,刘光复,刘马林,等.车用永磁同步电机三维温度场分析[J].中国机械工程,2015,26(11):1438-1444.

[2] 沈超,余鹏,杨建中,等.基于CFD的电动汽车驱动电机冷却流道对比研究[J].郑州大学学报(工学版),2018,39(4):41-45,69.
[3] 孙海燕,郑星,史立伟,等.电动汽车水冷式永磁同步电机设计与分析[J].科学技术与工程,2019,19(13):87-91.
[4] 李翠萍,管正伟,丁秀翠,等.电动汽车用电机冷却系统设计及发展综述[J].微特电机,2019,47(1):82-86.
[5] 丁永根,徐天稷,张南,等.新能源汽车驱动电机壳体冷却结构设计及热仿真分析[J].时代汽车,2020(16):71-72.
[6] 程树康,李翠萍,柴凤.不同冷却结构的微型电动车用感应电机三维稳态温度场分析[J].中国电机工程学报,2012,32(30):82-90,14.
[7] 陈文华,贺青川,何强,等.高速电主轴水冷系统三维仿真与试验分析[J].中国机械工程,2010,21(5):550-555.
[8] 赵晨光,闫振敏,杨思雨,等.一种用于永磁同步电机的液冷水道设计[C]//第十五届河南省汽车工程科技学术研讨会论文集.郑州:河南省汽车工程协会,2019:362-364.
[9] 喻皓,王配,谭立真,等.新能源车用驱动电机水道优化设计[J].机电信息,2018(21):136-137,139.
[10] 胥军,孙裕民,李刚炎,等.电动物流车驱动电机冷却系统最优温度控制[J].华南理工大学学报(自然科学版),2018,46(12):51-57.
[11] 刘慧军,陈芬放,黄瑞,等.车用驱动电机冷却系统仿真研究[J].中南大学学报(自然科学版),2020,51(7):2002-2012.
[12] 周俊杰,王梅玲,郭朋飞,等.汽轮机叶型的三维数值模拟及优化[J].郑州大学学报(工学版),2015,36(1):49-53.
[13] 徐刚,梁帅,刘武发,等.流动聚焦型微流控芯片微通道结构优化[J].郑州大学学报(工学版),2020,41(4):87-91.
[14] LIU G X,FU L,ZHENG Y P,et al.Fluid-solid coupling analysis of 65M radio telescope antenna[C]//Fifth Asia International Symposium on Mechatronics (AISM 2015). Stevenage:IET,2015:1-5.
[15] 陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001.

相似文献/References:

[1]沈超,余鹏,杨建中,等.基于CFD的电动汽车驱动电机冷却流道对比研究[J].郑州大学学报(工学版),2018,39(04):41.[doi:1013705/j.issn.1671-6833.2018.01.003]
 Shen Chao,Yu Peng,Yang Jianzhong,et al.Comparative Study on Cooling Channel for Electric Vehicle Drive Motor Based on CFD[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):41.[doi:1013705/j.issn.1671-6833.2018.01.003]

更新日期/Last Update: 2021-12-17