[1]赵必大、蔡扬政、姚泽阳.KK形圆管相贯节点平面外受弯抗震性能研究[J].郑州大学学报(工学版),2021,42(02):7-12.[doi:10.13705/j.issn.1671-6833.2021.02.012]
 ZHAO Bida,CAI Yangzheng,YAO Zeyang.Study on Seismic Behavior of Unstiffened Circular Hollow Section KK-joints under Out-of-plane Bending[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):7-12.[doi:10.13705/j.issn.1671-6833.2021.02.012]
点击复制

KK形圆管相贯节点平面外受弯抗震性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年02期
页码:
7-12
栏目:
出版日期:
2021-04-12

文章信息/Info

Title:
Study on Seismic Behavior of Unstiffened Circular Hollow Section KK-joints under Out-of-plane Bending
作者:
赵必大、蔡扬政、姚泽阳
浙江工业大学土木工程学院;
Author(s):
ZHAO Bida CAI Yangzheng YAO Zeyang
School of Civil Engineering, Zhejiang University of Technology;
关键词:
Keywords:
unstiffened circular hollow section(CHS) KK-joints unstiffened CHS X-joints out-of-plane flexural seismic behavior ductility energy dissipation
DOI:
10.13705/j.issn.1671-6833.2021.02.012
文献标志码:
A
摘要:
平面KK形圆钢管相贯节点和X形圆钢管相贯节点是单层扁平钢管网壳结构常用的两种节点形式。为了研究KK形圆钢管相贯节点的平面外受弯抗震性能,对KK形节点进行了平面外往复弯矩加载试验,并将KK形节点的试验结果与已有钢管相同的X形节点的试验结果进行对比分析,考察两类节点的平面外受弯性能的差异。试验结果表明:KK形圆钢管节点的破坏模式为主管管壁塑性开裂,开裂后承载力下降缓慢,节点主要依靠主管管壁塑性发展和开裂后的裂纹扩散来耗能,节点的延性系数超过6,表现出良好的抗震性能和变形能力。与X形节点的对比表明:相邻支管相互作用的特点使得KK形节点在一根支管处的平面外抗弯承载力比相应的X形节点低了约23%,但接近EC3规范关于X形节点平面外抗弯承载力公式计算值。此外,受力机理分析和有限元分析表明:在平面外弯矩作用下,KK节点的核心区的受力方式类似四角承受拉力作用,而X形节点的核心区则为两个对角方向拉力作用,故KK节点的塑性发展比X形节点更加均匀、且覆盖面更加广泛;两个节点的试验结果对比也表明:KK节点的耗能能力、变形能力以及延性均比X形节点更强。
Abstract:
To study the out-of-plane bending seismic behavior of Unstiffened circular hollow section (CHS) KK-joints, an out-of-plane bending cyclic loading test was performed. Moreover, the test results of the KK-joints were compared with the existing test results of the corresponding X-joints (with same tubular dimension and material of the KK-joints), to investigate the seismic performance difference between the KK-joints and the X-joints. Additionally, the performance difference was further interpreted by the load-carrying mechanism analysis. The results showed that the failure mode of the KK-joints was chord wall crack after plasticizing, and the resistance decreases slowly after cracking. The energy dissipated of the KK-joints mainly relied on plastic deformation and crack propagation of the chord wall. The ductility ratio of the KK-joints was large than 6, which demonstrated excellent deformability and seismic behavior. It also found that the stress characteristics of the adjacent brace interaction made the out-of-plane flexural strength of KK-joints about 23% lower than that of the corresponding X-joints, but close to the value calculated by the predict equation of CHS X-joints of the EC3 specification. Moreover, the results of load-carrying mechanism analysis and FE analysis showed that the joint-zone of the KK-joints and the X-joints were subjected to tension in the four corners and in two diagonal directions respectively. Therefore, the KK-joints would develop more uniform and extensive plastic at joint-zone than that of X-joints. The comparison of test results between the two type joints also showed that the deformability, ductility, and energy dissipation of the KK-joints were also better than that of the corresponding X-joints.

参考文献/References:

[1] 王伟,陈以一,杜纯领,等.上海光源工程屋盖钢管节点平面外受弯性能试验研究[J].建筑结构学报,2009,30(1):75-81.

[2] 李常虹,陈志强,肖克艰,等.成都双流国际机场T2航站楼钢结构屋盖相贯节点极限承载力分析[J].建筑结构,2010,40(9):20-22,26.
[3] KUROBANE Y.Static behaviour and earthquake resistant design of welded tubular structures[J].CISM international centre for mechanical sciences,1998,394(1):53-116.
[4] QIN F,FUNG T C,SOH C K.Hysteretic behavior of completely overlap tubular joints[J].Journal of constructional steel research,2001,57(7):811-829.
[5] 陈以一,沈祖炎,翟红,等.圆钢管相贯节点滞回特性的实验研究[J].建筑结构学报,2003,24(6):57-62.
[6] WANG W,CHEN Y Y.Hysteretic behaviour of tubular joints under cyclic loading[J].Journal of constructional steel research,2007,63(10):1384-1395.
[7] ZHAO X Z,LIU J T,XU X B,et al.Hysteretic behaviour of overlapped tubular k-joints under cyclic loading[J].Journal of constructional steel research,2018,145:397-413.
[8] 孟宪德,王伟,陈以一,等.X型厚壁圆管相贯节点平面外受弯抗震性能试验研究[J].建筑结构学报,2009,30(5):126-131.
[9] 陈以一,赵必大,王伟,等.平面KK型圆钢管相贯节点平面外受弯性能研究[J].土木工程学报,2010,43(11):8-16.
[10] 赵必大,蔡扬政,王伟.支主管夹角对X形圆钢管节点平面外受弯性能影响[J].工程力学,2019,36(7):99-108.
[11] 孟宪德,陈以一,王伟.X形圆钢管相贯节点平面外受弯滞回模型研究[J].土木工程学报,2012,45(8)8-14.
[12] ZHAO B D, CHEN Y Y. A smart multi-spring assembling model for simulation of hysteretic behavior of unstiffened CHS X-joint[C]//14th International Symposium on Tubular Structures.Boca Raton: CRC Press, 2012: 549-556.
[13] ZHAO B D,SUN C,CAI Y Z,et al.An out-of-plane bending hysteretic model for multi-planar CHS X-connections[J].Structures,2020,23:335-350.
[14] 中华人民共和国住房和城乡建设部.钢结构焊接规范:GB 50661—2011[S].北京:中国建筑工业出版社,2012.
[15] KUROBANE Y,MAKINO Y,OCHI K.Ultimate resistance of unstiffened tubular joints[J].Journal of structural engineering,1984,110(2):385-400.
[16] Eurocode 3: Design of steel structures, part 1.8: Design of joints:BS EN 1993-1-8-2005[S]. Brussels: European Committee for standardization, 2005.[17] 中国工程建设标准化协会.钢管结构技术规程:CECS 280—2010[S].北京:中国计划出版社,2010.

更新日期/Last Update: 2021-05-30