[1]楚留声,王启源,王帅起,等.反复荷载下 CRC 梁柱节点纵筋黏结性能试验研究[J].郑州大学学报(工学版),2022,43(04):74-79.[doi:10.13705/j.issn.1671-6833.2022.04.014]
 CHU Liusheng,WANG Qiyuan,WANG Shuaiqi,et al.Experimental Study on the Bonding Performance of Longitudinal Reinforcement in CRC Beam-column Joints under Cyclic Loads[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):74-79.[doi:10.13705/j.issn.1671-6833.2022.04.014]
点击复制

反复荷载下 CRC 梁柱节点纵筋黏结性能试验研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
74-79
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Experimental Study on the Bonding Performance of Longitudinal Reinforcement in CRC Beam-column Joints under Cyclic Loads
作者:
楚留声1 王启源1 王帅起1 程站起1 王起帆2
1.郑州大学土木工程学院;2.陆军勤务学院军事设施系;

Author(s):
CHU Liusheng1WANG Qiyuan1WANG Shuaiqi1CHENG Zhanqi1WANG Qifan2
1.School of Civil Engineering,Zhengzhou University,Zhengzhou 450001,China;2.Department of Civil Engineering,Army Logistics Academy,Chongqing 401331,China
关键词:
Keywords:
crumb rubber concretejointlongitudinal reinforcement bond stresslow cyclic loading testaxial compression ratio
分类号:
TU375. 4
DOI:
10.13705/j.issn.1671-6833.2022.04.014
文献标志码:
A
摘要:
为研究橡胶混凝土梁柱节点的纵筋黏结性能,设计并制作了 4 个梁柱节点试件,其中 1 个为普通混凝土足尺节点,3 个为橡胶混凝土足尺节点,橡胶取代率为 15% 。 对各试件分别进行低周反复荷载试验,得到不同材料和不同轴压比下的破坏模式、荷载-位移滞回曲线和纵筋黏结应力滞回曲线,并对纵 筋平均黏结应力进行分析。 结果表明, 低周反复荷载下, 各节点试件的破坏模式均为核心区的剪切破坏;平均黏结应力与荷载呈线性增长关系,进入屈服阶段后,平均黏结应力达到峰值并逐渐退化,产生黏 结滑移;在同等混凝土强度等级下,橡胶的添加使梁柱节点纵向钢筋黏结强度降低了 5% ;增大轴压比, 节点纵向钢筋黏结应力和相对黏结强度均随之增大,黏结性能提高,高轴压比( 0. 59) 下的纵筋黏结强度比中( 0. 37) 、低( 0. 15) 轴压比下的强度分别增大 5% 、13% ;在该橡胶取代率下,高轴压比( 0. 59) 对纵筋黏结性能的提高作用大于添加橡胶对其的减弱作用。
Abstract:
In order to study the longitudinal reinforcement bonding performance of crumb rubber concrete beam-column joints,four beam-column joints specimens were designed and fabricated,including one full-scale joint of ordinary concrete and three full-scale joints of rubber concrete.The rubber replacement rate was 15%.Low cyclic loading tests were carried out on each specimen to obtain the failure modes,load-displacement hysteresis curves and bond stress hysteresis curves of longitudinal bars under different materials and axial compression ratios,and the average bond stress of longitudinal bars was analyzed.The results show that under low cyclic loading,the failure mode of each node specimen is the shear failure of the core area.The average bond stress increases linearly with load.After entering the yield stage,the average bond stress reaches the peak and gradually degenerates,resulting in bond slip.At the same concrete strength grade,the bond strength of longitudinal reinforcement in beam-column joints is reduced by 5% by adding rubber.With the increase of axial compression ratio,the bond stress and relative bond strength of longitudinal reinforcement increase,and the bonding performance is improved.The bond strength of longitudinal bars at high axial pressure ratio (0.59) is 5% and 13% higher than that at medium (0.37) and low (0.15) axial pressure ratios,respectively.Under the rubber replacement rate,the effect of high axial pressure ratio (0.59) on the bond performance of longitudinal reinforcement is greater than that of adding rubber.

参考文献/References:

[1] ELDIN N N, SENOUCI A B. Rubber-tire particles as concrete aggregate[ J] . Journal of materials in civil engineering, 1993, 5(4) : 478-496. 

[2] TOPÇU I B. The properties of rubberized concretes [ J] . Cement and concrete research, 1995, 25 ( 2) : 304-310.
[3] ROYCHAND R, GRAVINA R J, YAN Z G, et al. A comprehensive review on the mechanical properties of waste tire rubber concrete[ J] . Construction and building materials, 2020, 237: 117651.
[4] AZIZIAN M F, NELSON P O, THAYUMANAVAN P, et al. Environmental impact of highway construction and repair materials on surface and ground waters: case study: crumb rubber asphalt concrete[ J] . Waste management, 2003, 23(8) : 719-728. 
[5] TANCHAISAWAT T, BERGADO D T, VOOTTIPRUEX P. 2D and 3D simulation of geogrid-reinforced geocomposite material embankment on soft Bangkok clay[ J] . Geosynthetics international, 2009, 16 ( 6) : 420-432.
[6] ELTAYEB E, XING M, YAN Z G, et al. Influence of rubber particles on the properties of foam concrete[ J] . Journal of building engineering, 2020, 30: 101217.
[7] ELCHALAKANI M. High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers [ J] . Structures, 2015, 1: 20 -38. 
[8] 李高举. 橡胶混凝土框架节点抗震性能试验与理 论研究[D] . 郑州: 郑州大学, 2019. 
LI G J. Experimental and analytical study on seismic behavior of rubber concrete frame joints [ D] . Zhengzhou: Zhengzhou University, 2019. 
[9] 文鹏. 橡胶混凝土与钢筋粘结性能试验研究[ D] . 郑州: 郑州大学, 2017. 
WEN P. Experimental research on bond strengh properties between rubberized concrete and steel bars[D] . Zhengzhou: Zhengzhou University, 2017.
[10] 薛刚, 张悦. 冻融循环作用后橡胶混凝土与钢筋锚 固性能试验研究[ J] . 硅酸盐通报, 2019, 38(1) : 1 -6. 
XUE G, ZHANG Y. Experimental study on the anchorage performance of rubber concrete and steel after freeze-thaw cycles[ J] . Bulletin of the Chinese ceramic society, 2019, 38(1) : 1-6.
[11] 中华人民共和国住房和城乡建设部. 混凝土结构 设计规范: GB 50010—2010[ S] . 北京: 中国建筑 工业出版社, 2011. 
Ministry of Housing and Urban-Rural Development of the People′ s Republic of China. Code for design of concrete structures: GB 50010—2010 [ S] . Beijing: China Architecture & Building Press, 2011.
[12] 中华人民共和国住房和城乡建设部. 建筑抗震设 计规范: GB 50011—2010[ S] . 北京: 中国建筑工 业出版社, 2010. 
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Code for seismic design of buildings: GB 50011—2010 [ S ] . Beijing: China Architecture & Building Press, 2010.
[13] 赵秋红, 王菲, 朱涵. 结构用橡胶集料混凝土受压 全曲线 试 验 及 其 本 构 模 型 [ J] . 复 合 材 料 学 报, 2018, 35(8) : 2222-2234.
 ZHAO Q H, WANG F, ZHU H. Compression test on curves and constitutive model of crumb rubber concrete for structural purposes [ J] . Acta materiae compositae sinica, 2018, 35(8) : 2222-2234.
[14] LI D D, ZHUGE Y, GRAVINA R, et al. Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab[ J] . Construction and building materials, 2018, 166: 745-759. 
[15] 肖景平, 付佳丽, 周卫东, 等. 改性再生混凝土框 架中节点纵筋粘结性能试验研究[ J] . 工程抗震与 加固改造, 2016, 38(5) : 77-84. 
XIAO J P, FU J L, ZHOU W D, et al. Experimental study on longitudinal reinforcement bond behaviors of modified recycled aggregate concrete frame interior beam-column joints [ J ] . Earthquake resistant engineering and retrofitting, 2016, 38(5) : 77-84.

相似文献/References:

[1]赵 毅,段松甫,牛中浩.钢管混凝土异形柱-钢梁节点恢复力模型研究[J].郑州大学学报(工学版),2022,43(06):104.[doi:10.13705/j.issn.1671-6833.2022.06.012]
 ZHAO Yi,DUAN Songfu,NIU Zhonghao.Research on Restoring Force Modeling of Concrete-filled Steel Tubular Special-shaped Column-steel Beam Nodes[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):104.[doi:10.13705/j.issn.1671-6833.2022.06.012]
[2]高丹盈,魏东,朱海堂,等.钢纤维高强混凝土边节点能量耗散研究[J].郑州大学学报(工学版),2010,31(02):4.[doi:10.3969/j.issn.1671-6833.2010.02.001]
 GAO Danying,WEI Dong,ZHU Haiting,et al.Study on energy dissipation of steel fiber high-strength concrete edge nodes[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):4.[doi:10.3969/j.issn.1671-6833.2010.02.001]

更新日期/Last Update: 2022-07-03