[1]琚新刚,郭海鸥,郭敏..基于径向基神经网络的乙醇气体检测仪仿真分析[J].郑州大学学报(工学版),2010,31(03):61-64.[doi:10.3969/j.issn.1671-6833.2010.03.016]
 Ju Xingang,Guo Haiou,Guo Min.Simulation analysis of ethanol gas detector based on radial basis neural network[J].Journal of Zhengzhou University (Engineering Science),2010,31(03):61-64.[doi:10.3969/j.issn.1671-6833.2010.03.016]
点击复制

基于径向基神经网络的乙醇气体检测仪仿真分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
31
期数:
2010年03期
页码:
61-64
栏目:
出版日期:
2010-03-01

文章信息/Info

Title:
Simulation analysis of ethanol gas detector based on radial basis neural network
作者:
琚新刚郭海鸥郭敏.
郑州大学物理工程学院,河南郑州450001;河南教育学院电路与系统重点学科,河南郑州450046, 河南教育学院电路与系统重点学科,河南郑州,450046, 郑州大学物理工程学院,河南郑州,450001
Author(s):
Ju Xingang; Guo Haiou; Guo Min
关键词:
径向基函数 神经网络 曲线拟合 Matlab仿真
Keywords:
DOI:
10.3969/j.issn.1671-6833.2010.03.016
文献标志码:
A
摘要:
以乙醇气体检测仪的算法设计为例,采用径向基神经网络,对34组乙醇气体浓度检测实验取得的标定数据进行拟合,即在Matlab环境下,利用径向基函数进行网络设计、仿真分析.结果显示,基于径向基网络的算法数据存储量小,并具有较好的误差性能,满足系统的误差要求,同时,网络的训练时间短,收敛速度快.
Abstract:
Taking the algorithm design of ethanol gas detector as an example, the radial basis neural network was used to fit the calibration data obtained from 34 groups of ethanol gas concentration detection experiments, that is, the network design and simulation analysis were carried out by using the radial basis function in the Matlab environment. The results show that the algorithm based on radial base network has small data storage and good error performance, which meets the error requirements of the system, and the training time of the network is short and the convergence speed is fast.

相似文献/References:

[1]曾庆山,全书鹏,靳志强..融合BP神经网络与ARIMA的短时交通流预测[J].郑州大学学报(工学版),2011,32(04):60.[doi:10.3969/j.issn.1671-6833.2011.04.015]
[2]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[3]高攀科,谢永利..隧道软弱围岩的改进BP神经网络位移反分析[J].郑州大学学报(工学版),2013,34(01):23.[doi:10.3969/j.issn.1671-6833.2013.01.006]
 GA0 Pan-ke,XIE Yong-li.Displacement Back Analysis of Tunnels in Soft and Weak RocksBased on Improved BP Neural Network Method[J].Journal of Zhengzhou University (Engineering Science),2013,34(03):23.[doi:10.3969/j.issn.1671-6833.2013.01.006]
[4]孙芳锦,张大明,殷志祥..基于图像识别和神经网络的大跨度结构风荷载模拟[J].郑州大学学报(工学版),2008,29(04):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
 SUN Fangjin,ZHANG Daming,Yin Zhixiang.Wind load simulation of large-span structure based on image recognition and neural network[J].Journal of Zhengzhou University (Engineering Science),2008,29(03):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
[5]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
[6]李清富,成子桥,刘建民..混凝土结构剩余寿命的预测[J].郑州大学学报(工学版),2003,24(01):11.[doi:10.3969/j.issn.1671-6833.2003.01.003]
 LI Qingfu,Chengzi Bridge,Liu Jianmin.Prediction of the remaining life of concrete structures[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):11.[doi:10.3969/j.issn.1671-6833.2003.01.003]
[7]张鸿河,关惠玲..基于包络分析的自行火炮变速箱故障诊断研究[J].郑州大学学报(工学版),2003,24(03):91.[doi:10.3969/j.issn.1671-6833.2003.03.023]
[8]冯冬青,张希平..基于神经网络的自学习模糊控制[J].郑州大学学报(工学版),2003,24(04):6.[doi:10.3969/j.issn.1671-6833.2003.04.002]
 Feng Dongqing,Zhang Xiping.Self-learning fuzzy control based on neural network[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):6.[doi:10.3969/j.issn.1671-6833.2003.04.002]
[9]王东云,郭基凤..智能加工单元及调度问题的研究[J].郑州大学学报(工学版),1999,20(03):22.[doi:10.3969/j.issn.1671-6833.1999.03.008]
 WANG Dongyun,Guo Jifeng.Research on intelligent processing unit and scheduling problem[J].Journal of Zhengzhou University (Engineering Science),1999,20(03):22.[doi:10.3969/j.issn.1671-6833.1999.03.008]
[10]王明东,杨岙迪,李龙好,等.基于VSG 下垂优化控制的新能源电力系统惯性提升[J].郑州大学学报(工学版),2024,45(03):127.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 005]
 WANG Mingdong,YANG Aodi,LI Longhao,et al.Inertia Lifting of New Energy Power System Based on VSG Droop Optimal Control[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):127.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 005]

更新日期/Last Update: 1900-01-01