[1]赵艳敏,霍达..基于遗传模拟退火算法的钢桁架结构优化设计[J].郑州大学学报(工学版),2011,32(06):54-57.
 ZHAO Yan-min,HUO Da.Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm[J].Journal of Zhengzhou University (Engineering Science),2011,32(06):54-57.
点击复制

基于遗传模拟退火算法的钢桁架结构优化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
32
期数:
2011年06期
页码:
54-57
栏目:
出版日期:
2011-11-10

文章信息/Info

Title:
Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm
作者:
赵艳敏霍达.
北京京北职业技术学院,北京,101400, 北京工业大学建筑工程学院,北京,100022
Author(s):
ZHAO Yan-min1HUO Da2
1.Northerm Beijing Vocational Education Institute,Beijing 101400,China; 2.Faculty of Architectural Engineering,Beijing U-niversity of ’Technology ,Beijing 100022,China
关键词:
遗传算法 模拟退火算法 优化设计
Keywords:
genetic algorithm simulated annealing algorithm optimal design
分类号:
TU323.4
文献标志码:
A
摘要:
将遗传算法(GA)的全局寻优性能好和模拟退火算法(SA)的局部搜索能力强的优点相结合,提出了用于钢桁架结构离散变量优化设计的遗传模拟退火算法(SAGA).以十杆桁架为例对此算法进行了数值实验,并将实验结果与其他优化方法相比较.算例结果表明,遗传模拟退火算法的寻优概率是100%,平均进化代数为35代,其稳定性和求解效率均高于改进的遗传算法.实验结果显示,遗传模拟退火算法在整体搜索同时,采用退火操作进行局部搜索,提高了算法的局部搜索能力,有效克服了遗传算法迭代缓慢的缺点,把遗传模拟退火算法用于钢桁架离散变量的优化设计中是行之有效的.
Abstract:
To combine Cenetic Algorithm ( CA) with Simulated Annealing Algorithm (SA) that the CeneticSimulated Annealing Algorithm (SAGA) was proposed . It had the global searching ability of CA together withthe local fast converging ability of SA. It was applied to the steel truss structural optimization with discrete var-iables and this paper provided the comparison between SACA experiments and other optimal results. The ex-periments showed that the searching optimization probability of SACA was 100% and the average evolved gen-erations is 35 ,which indicated that SACA was more stable and had better seeking efficiency than improvedGA. The SACA improved the local searching ability and overcame evolution slowness defect of CA through ap-plying local searching annealing method.The SACA is an effective method to seek the optimal design of steeltrusses with discrete variables.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]左士伟,杨胡萍,张扬,等.基于改进遗传算法的电力系统无功优化[J].郑州大学学报(工学版),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
 YANG Huping,Ll Weiren,ZUO Shiwei,et al.Reactive Power Optimization by Improved Genetic Algorithm Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
[3]陆森林,任栉翔.基于响应面法的车内噪声分析与优化[J].郑州大学学报(工学版),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
 Lu Senlin,Ren Guxiang.Analysis and Optimization of Vehicle Inner Noise Based on Response Surface Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
[4]蒋建东,王忆,张灵娟,等.基于遗传算法的背靠背换流站控制系统参数优化[J].郑州大学学报(工学版),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
 JIANG Jian-dong,WANG Yi,ZHANG Ling-juan,et al.Parameter Optimization of Control System for Back to Back Converter Station based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
[5]穆瑞杰.基于遗传算法的地铁车站引导标识布点探析[J].郑州大学学报(工学版),2018,39(01):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
 Mu Ruijie.Analysis of Position Settings for Oriented Identifies of Subway Station[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
[6]蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法 [J].郑州大学学报(工学版),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
 Jiang Peihua,Huabing,Huang Yu,et al.The Attitude Control Method of Variable Mass Spacecraft Based on Genetic Algorithm [J].Journal of Zhengzhou University (Engineering Science),2019,40(06):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
[7]樊一娜,梁伟,黄渝清,等.基于IGA 的配电系统运行损耗与可靠性优化[J].郑州大学学报(工学版),2019,40(05):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
 Fan Yina,Liang Wei,Huang Yuqing,et al.Optimization of operation loss and reliability of power distribution system based on IGA[J].Journal of Zhengzhou University (Engineering Science),2019,40(06):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
[8]黄茜,王书勤,邓少鸿,等.不确定环境下救灾部队驻地选址及搜救路径优化[J].郑州大学学报(工学版),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
 Huang Qian,Wang Shuqin,Deng Shaohong,et al.Study on Location-Routing Problem of Earthquake Relief Troops in Uncertain Unvironment[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
[9]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(06):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
[10]杨丽娜,刘刚,王秋生..一种改进的遗传算法及其应用[J].郑州大学学报(工学版),2005,26(03):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]
 Yang Lina,LIU Gang,Wang Qiusheng.An improved genetic algorithm and its application[J].Journal of Zhengzhou University (Engineering Science),2005,26(06):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]

更新日期/Last Update: 1900-01-01