[1]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36-39.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(03):36-39.[doi:10.3969/j.issn.1671-6833.2012.03.009]
点击复制

遗传神经网络在齿轮故障诊断中的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
33
期数:
2012年03期
页码:
36-39
栏目:
出版日期:
2012-05-10

文章信息/Info

Title:
Application of Genetic Neural Network to Gear Fault Diagnosis
作者:
刘景艳李玉东杨晓邦.
河南理工大学 电气工程与自动化学院,河南焦作,454000, 河南理工大学 电气工程与自动化学院,河南焦作,454000, 河南理工大学 电气工程与自动化学院,河南焦作,454000
Author(s):
LIU Jingyan LI YudongYANG Xiaobang
School of Electricity & Automation Engineering, Henan Poiytechnic Univerity, Jiaozuo 454000, China
关键词:
齿轮 故障诊断 神经网络 遗传算法
Keywords:
gearfault diagnosisneural network genetic algorithm
分类号:
TP183
DOI:
10.3969/j.issn.1671-6833.2012.03.009
摘要:
由于齿轮故障征兆与故障之间具有非线性和耦合性等特点,采用BP神经网络对齿轮进行故障诊断存在着收敛速度慢和可靠性差等缺点,提出了一种基于遗传算法的BP神经网络齿轮故障诊断方法,即在利用BP神经网络对齿轮进行故障诊断的基础上,利用遗传算法对神经网络的权值和阈值进行修正,得到全局的最优值.仿真结果表明,该诊断策略具有故障诊断能力强和诊断效率高的特点,改善了齿轮故障诊断的精度和速度.
Abstract:
Because gear faults have characteristics of being nonlinear and coupling between fault symptoms andfault, BP neural network gear fault diagnosis has slow convergence speed and poor reliability, The BP neuralnetwork gear fault diagnosis method based on genelic algorithm is put forward. Namely, the BP neural networkis used in gear fault diagnosis, and genetic algorithm is applied to optimize the weights and thresholds of thenetwork. So the global optimal value is obtained, The simulation results show that the diagnosis strategy hasthe characteristic of strong diagnosis ability and high diagnosis effciency and improves the gear fault diagnosisprecision and speed.

相似文献/References:

[1]王洪明郝旺身韩捷.基于LMD和样本熵的齿轮故障特征提取方法研究[J].郑州大学学报(工学版),2015,36(03):44.[doi:10.3969/ j. issn. 1671 -6833.2015.03.010]
 WANG Hong-min,HAO Wang-shen,HAN Jie,et al.Research on Gear Fault Feature ExtractionBased on LMD and Sample Entropy[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):44.[doi:10.3969/ j. issn. 1671 -6833.2015.03.010]
[2]刘竹丽,陈赟,王祝新.齿面残余应力对齿轮轮齿弯曲疲劳寿命的影响分析[J].郑州大学学报(工学版),2020,41(03):53.[doi:10.13705/j.issn.1671-6833.2019.02.013]
 Liu Zhuli,Chen Yun,Wang Zhuxin.The analysis of the residual stress of tooth surfaces influence on the flexural fatigue life of gear tooth[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):53.[doi:10.13705/j.issn.1671-6833.2019.02.013]
[3]雷文平,宋圣霖,郝旺身,等.基于FV-FBE的滚动轴承故障诊断研究[J].郑州大学学报(工学版),2020,41(05):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
 LEI Wenping,SONG Shenglin,HAO Wangshen,et al.Fault Diagnosis of Rolling Bearing Based on FV-FBE[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
[4]王杰,王晓换..滚动轴承故障诊断虚拟系统的实现[J].郑州大学学报(工学版),2010,31(02):120.
 WANG Jie,WANG Xiaochange.Development of a Virtual Fault Diagnostic System For Rolling Bearing[J].Journal of Zhengzhou University (Engineering Science),2010,31(03):120.
[5]王忠勇,张振兴,段琳琳,等.基于故障树的某型舰炮故障诊断系统的设计与实现[J].郑州大学学报(工学版),2010,31(03):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
 Wang Zhongyong,ZHANG Zhenxing,DUAN Linlin,et al.Design and implementation of a certain type of naval gun fault diagnosis system based on fault tree[J].Journal of Zhengzhou University (Engineering Science),2010,31(03):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
[6]冯伟,谢小鹏,刘粲..齿轮磨损试验光谱油样分析及建模研究[J].郑州大学学报(工学版),2009,30(04):76.
 FENG Wei,XIE Xiaopeng,LIU Yu.Spectrographic Oil Analysis of and Modeling Study on Gear Wear Test[J].Journal of Zhengzhou University (Engineering Science),2009,30(03):76.
[7]齐保林,李凌均,李志农..基于支持向量机的故障模式识别研究[J].郑州大学学报(工学版),2007,28(01):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
 Qi Baolin,LI Lingjun,Li Zhinong.Research on failure mode recognition based on support vector machine[J].Journal of Zhengzhou University (Engineering Science),2007,28(03):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
[8]刘艳芳,周晓微,梁萌..人工神经网络在生物过程中的应用[J].郑州大学学报(工学版),2007,28(02):121.[doi:10.3969/j.issn.1671-6833.2007.02.031]
 LIU Yanfang,ZHOU Xiaowei,Liang Meng.Application of artificial neural networks in biological processes[J].Journal of Zhengzhou University (Engineering Science),2007,28(03):121.[doi:10.3969/j.issn.1671-6833.2007.02.031]
[9]石金彦,黄士涛,雷文平..粗糙集与决策树结合诊断故障的数据挖掘方法[J].郑州大学学报(工学版),2003,24(01):109.[doi:10.3969/j.issn.1671-6833.2003.01.027]
 Shi Jinyan,HUANG Shitao,Raven Ping.A data mining method that combines rough sets with decision trees to diagnose failures[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):109.[doi:10.3969/j.issn.1671-6833.2003.01.027]
[10]毕果,韩捷,梁川..基于矢量振动信号的AR功率谱分析及应用[J].郑州大学学报(工学版),2003,24(02):80.[doi:10.3969/j.issn.1671-6833.2003.02.021]
 Bego,Han Jie,Liang Chuan.AR power spectrum analysis and application based on vector vibration signal[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):80.[doi:10.3969/j.issn.1671-6833.2003.02.021]

更新日期/Last Update: 1900-01-01