[1]陆森林,王龙.CEEMD-FFT在滚动轴承故障诊断中的应用[J].郑州大学学报(工学版),2015,36(01):75-78.[doi:10.3969/ j.issn. 1671 -6833.2015.01.018]
 LU Sen-lin,WANG Long.Application of CEEMD-FFT in Roller Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):75-78.[doi:10.3969/ j.issn. 1671 -6833.2015.01.018]
点击复制

CEEMD-FFT在滚动轴承故障诊断中的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
36
期数:
2015年01期
页码:
75-78
栏目:
出版日期:
2015-01-10

文章信息/Info

Title:
Application of CEEMD-FFT in Roller Bearing Fault Diagnosis
作者:
陆森林王龙
江苏大学汽车与交通工程学院,江苏镇江212013
Author(s):
LU Sen-linWANG Long
College of Automobile and ’Traffic Engineering,Jiangsu University ,Zhenjiang 212013,China
关键词:
滚动轴承EMD EEMD CEEMD分解故障诊断
Keywords:
roller bearing EMDEEMDCEEMD fault diagnosis
分类号:
TH133.3 TP18
DOI:
10.3969/ j.issn. 1671 -6833.2015.01.018
文献标志码:
A
摘要:
针对经验模态分解(EMD)在非线性非平稳信号处理中存在模态混叠问题,虽然总体平均经验模态分解(EEMD)能在一定程度上抑制模态混叠问题,但是添加的白噪声不能完全被中和.因此利用补充的总体平均经验模态分解(CEEMD)对降噪监测信号进行分解,减少重构误差,提取最佳的IMF分量,然后对IMF分量进行FFT变换,实现对滚动轴承的故障诊断.通过对实验采集的滚动轴承的振动信号进行分析,证明了该方法的优越性,有一定的使用价值.
Abstract:
Modal aliasing problem exists in nonlinear and non-stationary signal processing through EmpiricalMode Decomposition (EMD ) ;Ensemble Empirical Mode Decomposition EEMD can suppress modal aliasingproblems in some extent,but added white noise can not be completely neutralized.So,complementary Ensem-ble Empirical Mode Decomposition (CEEMD) is proposed,which can reduce the reconstruction error and ex-tract the best Intrinsic Mode Function ( IMF). Then,fast fourier transformation is applied to the lMF compo-nent to derive the characteristic frequency of the fault. Analyzing the vibration signal collected by roller bear-ing experiment proved the superiority of the method and it has some practical value.

相似文献/References:

[1]李凌均,金兵,马艳丽,等.基于MEMD与MMSE的滚动轴承退化特征提取方法[J].郑州大学学报(工学版),2018,39(04):86.[doi:10.13705/j.issn.1671-6833.2018.01.004]
 Li Lingjun,Jin Bingma,Yanli Han,et al.The Method of Degradation Feature Extraction of Rolling Bearing Based on MEMD and Multivariate Multiscale Entropy[J].Journal of Zhengzhou University (Engineering Science),2018,39(01):86.[doi:10.13705/j.issn.1671-6833.2018.01.004]
[2]郝伟,林辉翼,郝旺身,等.基于全矢稀疏编码的滚动轴承故障识别方法[J].郑州大学学报(工学版),2019,40(03):6.[doi:10.13705/j.issn.1671-6833.2018.03.007]
 Hao Wei,Lin Huiyi,Hao Wangshen,et al.Fault Recognition Method of Rolling Bearing Based on Full Vector Sparse Coding[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):6.[doi:10.13705/j.issn.1671-6833.2018.03.007]
[3]刘洋,李凌均,王宇,等.基于FIF-CYCBD的滚动轴承故障特征提取方法研究[J].郑州大学学报(工学版),2022,43(04):35.[doi:10.13705/j.issn.1671-6833.2022.01.004]
 LIU Yang,LI Lingjun,WANG Yu,et al.Fault Feature Extraction Method of Rolling Bearings Based on FIF-CYCBD[J].Journal of Zhengzhou University (Engineering Science),2022,43(01):35.[doi:10.13705/j.issn.1671-6833.2022.01.004]
[4]王杰,王晓换..滚动轴承故障诊断虚拟系统的实现[J].郑州大学学报(工学版),2010,31(02):120.
 WANG Jie,WANG Xiaochange.Development of a Virtual Fault Diagnostic System For Rolling Bearing[J].Journal of Zhengzhou University (Engineering Science),2010,31(01):120.
[5]张明成,金国光,陈道学..滚动轴承球推式行星减速器的设计研究[J].郑州大学学报(工学版),2001,22(03):38.[doi:10.3969/j.issn.1671-6833.2001.03.011]
 ZHANG Mingcheng,Kim Guoguang,Chen Daoxue.Design study of rolling bearing ball push planetary reducer[J].Journal of Zhengzhou University (Engineering Science),2001,22(01):38.[doi:10.3969/j.issn.1671-6833.2001.03.011]
[6]何予鹏,华绍杰,徐波,等.高速动静压与滚动混合轴承的研究[J].郑州大学学报(工学版),1998,19(03):47.
 He Yupeng,Hua Shaojie,Xu Bo,et al.Research on high -speed static pressure and rolling hybrid bearing[J].Journal of Zhengzhou University (Engineering Science),1998,19(01):47.

更新日期/Last Update: