[1]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25-29.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):25-29.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
点击复制

基于支持向量机与Hamming距离的虹膜识别方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
36
期数:
2015年03期
页码:
25-29
栏目:
出版日期:
2015-06-30

文章信息/Info

Title:
Iris Recognition Method Based on Support Vector Machine and Hamming Distance
作者:
张震1张英杰2
郑州大学电气工程学院,河南郑州450001
Author(s):
ZHANG ZhenZHANG Ying-jie
School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
虹膜识别支持向量机 Hamming 距离 Log-Gabor滤波器
Keywords:
iris recognitionsupport vector machine hamming distanceLog-Gabor filter
分类号:
TP391
DOI:
10.3969/ j.issn.1671 -6833.2015.03.006
文献标志码:
A
摘要:
针对传统的虹膜识别方法侧重于特征提取这一现象,提出了一种侧重于模式匹配的识别算法,即基于支持向量机(Support Vector Machine,SVM)和 Hamming距离的虹膜识别方法.该算法首先对采集到的虹膜图像进行预处理,准确定位出虹膜,并对其进行归一化处理;然后使用Log-Gabor滤波器提取虹膜纹理特征,在得到虹膜特征编码后,用SVM和 Hamming 距离方法进行模式匹配.在CASIA 虹膜库上的实验结果表明:与经典的识别方法相比,该方法识别率达到了99.63% ,错误接受率(FAR)和错误拒绝率(FRR)分别降到了0.02%和0.35% .
Abstract:
In order to solve the problem of traditional iris recognitions focusing on feature extraction,a newmethod focusing on pattern matching was proposed,which was named iris recognition method using supportvector machine ( SVM) and Hamming distance.Firstly,normalization was used to process the iris positionwhich was located in the eye images.And then Log-Gabor filter was used to extract the features. After obtai-ning iris feature codes,SVM and Hamming distance were used to classify the iris features. Experiment resultson the CASIA iris database showed that recognition rate of this method reached 99.63%,false acceptance rateand false rejection rate were reduced to 0.02% and 0.35% compared to the classical recognition methods.

相似文献/References:

[1]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[2]张震,刘博,李龙.一种多特征提取及融合的虹膜识别方法[J].郑州大学学报(工学版),2017,38(01):63.[doi:10.13705/j.issn.1671-6833.2017.01.004]
 Zhang Zhen,Liu Bo,Li Long.An Iris Recognition Algorithm of Multiple Features Extraction and Fusion[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):63.[doi:10.13705/j.issn.1671-6833.2017.01.004]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(03):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
 XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(03):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
[9]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(03):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

更新日期/Last Update: