[1]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35-38,83.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):35-38,83.[doi:10.13705/j.issn.1671-6833.2017.04.001]
点击复制

基于人工鱼群优化SVM的声磁标签信号检测研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38
期数:
2017年04期
页码:
35-38,83
栏目:
出版日期:
2017-07-18

文章信息/Info

Title:
Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection
作者:
耿亚南邓计才
郑州大学信息工程学院,河南郑州,450001
Author(s):
Deng Jicai Geng Yanan
School of Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001
关键词:
人工鱼群算法支持向量机声磁标签检测率实时检测
Keywords:
DOI:
10.13705/j.issn.1671-6833.2017.04.001
文献标志码:
A
摘要:
为了提高声磁EAS系统的检测率,增强系统抗干扰性,研究了一种改进人工鱼群算法(IAFSA)与支持向量机(SVM)相结合的声磁标签信号检测算法(IAFSA-SVM).分析了支持向量机和传统人工鱼群算法的优势和缺陷,并提出了改进方案.实验表明:改进人工鱼群算法相比人工鱼群算法、遗传算法和粒子群算法收敛速度更快、寻优精度更高;IASFA-SVM算法相比传统的声磁标签检测算法体现出了检测率高、检测距离远和误报率低等优势,并且可以满足系统实时检测要求.
Abstract:
In order to improve the detection rate of the acoustic magnetic EAS system,and enhance the antiinterference performance,the paper studied a new label detection algorithm that was the combination of the improved artificial fish swarm algorithm (IAFSA) and the support vector machine (SVM).An improved scheme was proposed after analyzing the strengths and weaknesses of the traditional AFSA and SVM.The experimentalresults showed that the IASFA had the faster rate of convergence and the higher accuracy than AFSA,the genetic algorithm and the particle swarm algorithm;The IASFA-SVM had the higher detection rate,the longer detective distance and the lower rate of false than the traditional magnetic label detection algorithm,and the IASFA-SVM also could meet the requirements of real-time detection.

相似文献/References:

[1]安晓伟苏宏升.一种改进的群搜索优化算法[J].郑州大学学报(工学版),2015,36(02):105.[doi:10.3969/ j. issn.1671 -6833.2015.02.023]
 AN Xiao-wei,SU Hong-sheng.An Improved Group Search Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):105.[doi:10.3969/ j. issn.1671 -6833.2015.02.023]
[2]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
[3]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[4]董海龙,汤旻安,程海鹏.非均衡交通流五岔路口交通信号智能控制研究[J].郑州大学学报(工学版),2017,38(01):68.[doi:10.13705/j.issn.1671-6833.2017.01.005]
 Dong Hailong,Tang Minan,Cheng Haipeng.Research on Intelligent Control of Traffic Signal for Five-road Intersection of Unbalanced Traffic Flow[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):68.[doi:10.13705/j.issn.1671-6833.2017.01.005]
[5]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[6]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[7]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[8]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[9]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
 XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
[10]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(04):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

更新日期/Last Update: