[1]程全,刘晓青,刘玉春,等.基于Mean Shift聚类的多级阈值化方法[J].郑州大学学报(工学版),2017,38(06):64-69.[doi:10.13705/j.issn.1671-6833.2017.06.009]
 Cheng Quan,Liu Xiaoqing,Liu Yuchun,et al.Based on the Mean Shift Clustering Multilevel Threshold Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):64-69.[doi:10.13705/j.issn.1671-6833.2017.06.009]
点击复制

基于Mean Shift聚类的多级阈值化方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38
期数:
2017年06期
页码:
64-69
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Based on the Mean Shift Clustering Multilevel Threshold Method
作者:
程全刘晓青刘玉春王志良
1.周口师范学院机械与电气工程学院,河南周口,466001;2.北京科技大学 计算机与通信工程学院,北京,100083
Author(s):
Cheng Quan1Liu Xiaoqing1Liu Yuchun1Wang Zhiliang2
1. School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, 466001, China; 2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083
关键词:
多级阈值化图像分割迭代阈值化分割质量评估
Keywords:
DOI:
10.13705/j.issn.1671-6833.2017.06.009
文献标志码:
A
摘要:
为了解决多级阈值化技术中所选阈值的数量通常不能预先确定的问题,提出一种基于Mean Shift 聚类技术的新型多级阈值化方法.首先,通过使用Mean Shift技术探寻出潜在的模式中心,应用迭代的阈值选择方法来自动确定相邻模式中心的各个阈值;然后,采用多级阈值化对图像进行分割;最后,通过实验验证了基于Mean Shift聚类技术分割的图像相对于原始图像的对比度有了很大提高.该方法通过简单修改程序参数就能够灵活控制分割精度,可以广泛应用于单阈值分割、多级阈值分割和有损压缩等技术中.
Abstract:
In order to solve the problem that the number of selected thresholds in multilevel thresholds cannot be usually predetermined,a novel multi-level thresholding method based on Mean Shift Clustering technique was proposed.Using Mean Shift technology to explore the potential mode center,the various thresholds of ad-jacent to the mode center was automatically determined by using of iterative threshold selection method, and then the method of multi-level threshold was used for image segmentation.The experimental results showed that,relative to the original image,contrast of the image split with Mean Shift clustering technique was greatly improved.This method could control the segmentation precision flexibly by simply modifying parameters of the program,and could be widely used in the technology of single threshold segmentation, multi-level threshold segmentation and detrimental compression and other technologies.

相似文献/References:

[1]马岭,蒋慧琴,刘玉敏.基于局部特征的驾驶证自动识别系统[J].郑州大学学报(工学版),2017,38(05):13.[doi:10.13705/j.issn.1671-6833.2017.05.013]
 Maling,Jiang Huiqin,Liu Yumin.System for automatic recognition and renewal of driving license[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):13.[doi:10.13705/j.issn.1671-6833.2017.05.013]
[2]毕莹,薛冰,张孟杰.GP算法在图像分析上的应用综述[J].郑州大学学报(工学版),2018,39(06):3.[doi:10.13705/j.issn.1671-6833.2018.06.018]
 Bi Ying,Xue Bing,Zhang Mengjie.A Survey on Genetic Programming to Image Analysis[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):3.[doi:10.13705/j.issn.1671-6833.2018.06.018]
[3]胡春鹤,王依帆,朱书豪,等.基于鸽群优化算法的图像分割方法研究[J].郑州大学学报(工学版),2019,40(04):8.[doi:10.13705/j.issn.1671-6833.2019.04.010]
 Hu Chunhe,Wang Yifan,Zhu Shuhao,et al.Research on Image Segmentation Method Based on Pigeon Group Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2019,40(06):8.[doi:10.13705/j.issn.1671-6833.2019.04.010]
[4]王军芬,刘培跃,董建彬,等.用于分割无损检测图像的快速模糊C-均值算法[J].郑州大学学报(工学版),2022,43(06):42.[doi:10.13705/j.issn.1671-6833.2022.04.016]
 WANG Junfen,LIU Peiyue,DONG Jianbin,et al.Fast Fuzzy C Means Algorithm for Segmentation of Non-destructive Testing Image[J].Journal of Zhengzhou University (Engineering Science),2022,43(06):42.[doi:10.13705/j.issn.1671-6833.2022.04.016]

更新日期/Last Update: