[1]穆瑞杰.基于遗传算法的地铁车站引导标识布点探析[J].郑州大学学报(工学版),2018,39(01):73-77,89.[doi:10.13705/j.issn.1671-6833.2018.01.019]
 Mu Ruijie.Analysis of Position Settings for Oriented Identifies of Subway Station[J].Journal of Zhengzhou University (Engineering Science),2018,39(01):73-77,89.[doi:10.13705/j.issn.1671-6833.2018.01.019]
点击复制

基于遗传算法的地铁车站引导标识布点探析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
39
期数:
2018年01期
页码:
73-77,89
栏目:
出版日期:
2018-01-20

文章信息/Info

Title:
Analysis of Position Settings for Oriented Identifies of Subway Station
作者:
穆瑞杰
河南牧业经济学院工程管理学院,河南郑州,450011
Author(s):
Mu Ruijie
Henan institute of animal husbandry economy engineering college of management, henan zhengzhou, 450011
关键词:
引导标识遗传算法地铁车站布点
Keywords:
guide signgenetic algorithmsubway stationdistribution
DOI:
10.13705/j.issn.1671-6833.2018.01.019
文献标志码:
A
摘要:
鉴于地铁车站乘客引导标识的重要性及其布设的复杂性,本文提出通过标准遗传算法来解决车站引导标识布点问题,同时归纳出遗传算法的三大步骤和实施的关键点,并以郑州地铁1号线中的“五一公园”站为例,以乘客诱导量最大为目标函数,同时设置多个约束条件,并利用现场客流量图转化为算法所需要的相关数据,利用VB编程计算出布点,并对结果进行稳定性分析,最终获取引导标识较为合理的布点,进一步提高乘客的进出站效率。
Abstract:
The layout of passenger guide sign in subway station is important and complex. This paper proposes a genetic algorithm to solve the passenger guide sign layout problem. Wuyi Park station of Zhengzhou subway line 1 is taken as an example. The passenger guided quantity is set as the objective function and various constraints are considered. The used data are taken from the site passenger flow diagram. The experiments are conducted to find out the optimal layout and the stability of the results is also analyzed, The results that the used method is able to generate reasonable layout and the efficiency of the entry and exit is improved as well.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]左士伟,杨胡萍,张扬,等.基于改进遗传算法的电力系统无功优化[J].郑州大学学报(工学版),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
 YANG Huping,Ll Weiren,ZUO Shiwei,et al.Reactive Power Optimization by Improved Genetic Algorithm Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
[3]陆森林,任栉翔.基于响应面法的车内噪声分析与优化[J].郑州大学学报(工学版),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
 Lu Senlin,Ren Guxiang.Analysis and Optimization of Vehicle Inner Noise Based on Response Surface Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(01):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
[4]蒋建东,王忆,张灵娟,等.基于遗传算法的背靠背换流站控制系统参数优化[J].郑州大学学报(工学版),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
 JIANG Jian-dong,WANG Yi,ZHANG Ling-juan,et al.Parameter Optimization of Control System for Back to Back Converter Station based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
[5]蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法 [J].郑州大学学报(工学版),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
 Jiang Peihua,Huabing,Huang Yu,et al.The Attitude Control Method of Variable Mass Spacecraft Based on Genetic Algorithm [J].Journal of Zhengzhou University (Engineering Science),2019,40(01):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
[6]樊一娜,梁伟,黄渝清,等.基于IGA 的配电系统运行损耗与可靠性优化[J].郑州大学学报(工学版),2019,40(05):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
 Fan Yina,Liang Wei,Huang Yuqing,et al.Optimization of operation loss and reliability of power distribution system based on IGA[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
[7]黄茜,王书勤,邓少鸿,等.不确定环境下救灾部队驻地选址及搜救路径优化[J].郑州大学学报(工学版),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
 Huang Qian,Wang Shuqin,Deng Shaohong,et al.Study on Location-Routing Problem of Earthquake Relief Troops in Uncertain Unvironment[J].Journal of Zhengzhou University (Engineering Science),2021,42(01):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
[8]赵艳敏,霍达..基于遗传模拟退火算法的钢桁架结构优化设计[J].郑州大学学报(工学版),2011,32(06):54.
 ZHAO Yan-min,HUO Da.Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm[J].Journal of Zhengzhou University (Engineering Science),2011,32(01):54.
[9]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(01):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
[10]杨丽娜,刘刚,王秋生..一种改进的遗传算法及其应用[J].郑州大学学报(工学版),2005,26(03):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]
 Yang Lina,LIU Gang,Wang Qiusheng.An improved genetic algorithm and its application[J].Journal of Zhengzhou University (Engineering Science),2005,26(01):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]

更新日期/Last Update: 2018-01-23