[1]袁航,钟发海,聂上上,等.基于卷积神经网络的道路拥堵识别研究[J].郑州大学学报(工学版),2019,40(02):21-25.[doi:10.13705/j.issn.1671-6833.2019.02.008]
 LUO Ronghui,YUAN Hang,ZHONG Fahai,et al.The Research of Traffic Jam Detection Based on Convolutional Neural Network[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):21-25.[doi:10.13705/j.issn.1671-6833.2019.02.008]
点击复制

基于卷积神经网络的道路拥堵识别研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年02期
页码:
21-25
栏目:
出版日期:
2019-03-19

文章信息/Info

Title:
The Research of Traffic Jam Detection Based on Convolutional Neural Network
作者:
袁航钟发海聂上上罗荣辉
郑州大学物理工程学院
Author(s):
LUO RonghuiYUAN HangZHONG FahaiNIE Shangshang
School of Physics and Engineering, Zhengzhou University
关键词:
卷积神经网络深度学习图像识别拥堵检测智慧城市
Keywords:
convolutional neural networkdeep learningImage Identificationcongestion detectionSmart City
DOI:
10.13705/j.issn.1671-6833.2019.02.008
文献标志码:
A
摘要:
本文针对城市道路日益严峻的拥堵问题,依据道路拥堵快速检测技术对缓解堵车问题的应用价值,结合深度学习和图像处理技术,提出了一种基于卷积神经网络的道路拥堵检测方式。此方式相对于传统机器视觉方法,无需前期提取道路背景,不受光照亮度和实际环境的影响,具有识别速度快、占用计算资源少、泛化性好等特点。现已在实际项目中得以应用,并取得了较好的效果
Abstract:
  In order to solove the increasingly serious congestion problem of urban roads ,a road congestion dectection method based on convolutional neural network was proposed in this paper.This method was based on the appliciation value of road congestion rapid detection technology to alleviate the traffic jam promblem.Besides,it combined deep learning with image processing  technology.Compared with traditional methods,this method did not need to extract the background in the early stage, and was not affected by the illumination brightness and the actual environment.It had the characteristics of fasrt recognition speed,less ocupied comoutong resources and good generalization. It has been applied in practical projects and achieved good results.

相似文献/References:

[1]刘帅奇,王洁,安彦玲,等.基于CNN的非下采样剪切波域多聚焦图像融合[J].郑州大学学报(工学版),2019,40(04):7.[doi:10.13705/j.issn.1671-6833.2019.04.002]
 Shuaiqi Liu,Wang Jie,An Yanling,et al.Multi- focus Image Fusion Based on Convolution Neural Network in Non-sampled Shearlet Domain[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):7.[doi:10.13705/j.issn.1671-6833.2019.04.002]
[2]朱俊丞,杨之乐,郭媛君,等.深度学习在电力负荷预测中的应用综述[J].郑州大学学报(工学版),2019,40(05):12.[doi:10.13705/j.issn.1671-6833.2019.05.005]
 Zhu Juncheng,Young Joy,Guo Yuanjun,et al.A review of the application of deep learning in power load forecasting[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):12.[doi:10.13705/j.issn.1671-6833.2019.05.005]
[3]黄文锋,徐珊珊,孙燚,等.基于多分辨率卷积神经网络的火焰检测[J].郑州大学学报(工学版),2019,40(05):79.[doi:10.13705/j.issn.1671-6833.2019.05.022]
 Huang Wenfeng,Susan Hsu,Sun Yi,et al.Fire Detection Based on Multi-resolution Convolution Neural Network in Various Scenes[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):79.[doi:10.13705/j.issn.1671-6833.2019.05.022]
[4]李勇,金庆雨,张青川.融合位置注意力机制和改进BLSTM的食品评论情感分析[J].郑州大学学报(工学版),2020,41(01):58.[doi:10.13705/j.issn.1671-6833.2020.01.006]
 Li Yong,Jin Qingyu,Zhang Qingchuan.Improved BLSTM Food Review Sentiment Analysis with Positional Attention Mechanisms[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):58.[doi:10.13705/j.issn.1671-6833.2020.01.006]
[5]魏宏彬,张端金,杜广明,等.基于改进型YOLO v3的蔬菜识别算法[J].郑州大学学报(工学版),2020,41(02):7.[doi:10.13705/j.issn.1671-6833.2020.03.002]
 Wei Hongbin,Zhang Duanjin,Du Guangming,et al.Vegetable Detection Algorithm Based on Improved YOLO v3[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):7.[doi:10.13705/j.issn.1671-6833.2020.03.002]
[6]陈义飞、郭胜、潘文安、陆彦辉.基于多源传感器数据融合的三维场景重建[J].郑州大学学报(工学版),2021,42(02):81.[doi:10.13705/j.issn.1671-6833.2021.02.008]
 Chen Yifei,Guo Sheng,Pan Wenan,et al.3D Scene Reconstruction Based on Multi-source Sensor Data Fusion[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):81.[doi:10.13705/j.issn.1671-6833.2021.02.008]
[7]李学相,曹淇,刘成明.基于无配对生成对抗网络的图像超分辨率重建[J].郑州大学学报(工学版),2021,42(05):1.[doi:10.13705/j.issn.1671-6833.2021.05.018]
 LI Xuexiang,CAO Qi,LIU Chengming.Image Super-resolution Based on No Match Generative Adversarial Network[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):1.[doi:10.13705/j.issn.1671-6833.2021.05.018]
[8]张坚鑫,郭四稳,张国兰,等.基于多尺度特征融合的火灾检测模型[J].郑州大学学报(工学版),2021,42(05):13.[doi:10.13705/j.issn.1671-6833.2021.05.016]
 Zhang Jianxin,Guo Si Jing,Zhang Guolan,et al.Fire Detection Model Based on Multi-scale Feature Fusion[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):13.[doi:10.13705/j.issn.1671-6833.2021.05.016]
[9]王希鹏,李永,李智,等.融合图像深度的抗遮挡目标跟踪算法[J].郑州大学学报(工学版),2021,42(05):19.[doi:10.13705/j.issn.1671-6833.2021.05.011]
 Wang Xipeng,Li Yong,Li Zhi,et al.Anti-occlusion Target Tracking Algorithm Based on Image Depth[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):19.[doi:10.13705/j.issn.1671-6833.2021.05.011]
[10]逯鹏,王汉章,毛晓波,等.基于卷积自编码器网络的脉搏波分类模型[J].郑州大学学报(工学版),2021,42(05):56.[doi:10.13705/j.issn.1671-6833.2021.05.004]
 LU Peng,WANG Hanzhang,MAO Xiaobo,et al.Pulse Wave Classification Model Based on Convolutional Autoencoder[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):56.[doi:10.13705/j.issn.1671-6833.2021.05.004]
[11]成科扬,荣兰,蒋森林,等.基于深度学习的遥感图像超分辨率重建技术综述[J].郑州大学学报(工学版),2022,43(05):8.[doi:10.13705/j.issn.1671-6833.2022.05.013]
 CHENG Keyang,RONG Lan,JIANG Senlin,et al.Overview of Methods for Remote Sensing Image Super-resolution Reconstruction Based on Deep Learning[J].Journal of Zhengzhou University (Engineering Science),2022,43(02):8.[doi:10.13705/j.issn.1671-6833.2022.05.013]

更新日期/Last Update: 2019-03-24