[1]李燕燕,杨昊天,曾玙璠.基于随机森林MOPSO的城市最优资本结构分析[J].郑州大学学报(工学版),2019,40(04):14.[doi:10.13705/j.issn.1671-6833.2019.04.028]
 Li Yanyan,Yang Haotian,Zeng Yufan.Urban Optimal Capital Structure Analysis based on Random Forest and Multi-objective Particle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):14.[doi:10.13705/j.issn.1671-6833.2019.04.028]
点击复制

基于随机森林MOPSO的城市最优资本结构分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年04期
页码:
14
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Urban Optimal Capital Structure Analysis based on Random Forest and Multi-objective Particle Swarm Optimization
作者:
李燕燕杨昊天曾玙璠
1. 郑州大学商学院;2. 郑州大学产业技术研究院电气工程学院;3. 英国利物浦大学数学科学系
Author(s):
Li Yanyan 1Yang Haotian 2Zeng Yufan 3
1. School of Business, Zhengzhou University; 2. School of Electrical Engineering, Institute of Industrial Technology, Zhengzhou University; 3. Department of Mathematical Sciences, University of Liverpool
关键词:
随机森林多目标粒子群约束优化算法城市资本结构配置拟合回归相关性
Keywords:
random forestMulti-objective particle swarm constrained optimization algorithmCity capital structure allocationfit regressionCorrelation
DOI:
10.13705/j.issn.1671-6833.2019.04.028
文献标志码:
A
摘要:
城市资本结构是一个受到多因素交互影响的复杂问题.本文试图基于随机森林多目标粒子群算法构建多目标多因素影响下的城市最优资本结构模型,对城市资本结构状况进行剖析.首先利用随机森林的拟合回归特性,对历史数据进行拟合,从中找到历史数据特征之间的关系.随后采用多目标粒子群约束优化算法,根据已有的关系特征去寻找使目标同时达到最好效果的特征值,再根据这些效果最好的特征值从历史数据中寻找相关性最高的数据,从而分析出资本结构配置相对较优的城市以及年份.通过不断学习这些较优的结构配置,可以对各个城市的发展起到良好的借鉴作用
Abstract:
Urban capital structure was a complex?problem affected by multi-factors and multi-objective particle.This paper attempt ed to explore a scientific and appropriate d algorithm to construct the optimal capital structure model under the influence of multi-objective and multi-factors to analyze the situation of urban capital structure.First, the data in history could find the relationship among features of the data in history by using the regression characteristics of random forest. Then, the multi-objective particle swarm optimization algorithm was used to find values of the features that achieve the best results according to the existing relationship features. Then finding the most correlate data from the historical data based on the best eigenvalues of these effects. Therefore, the cities and the years with relatively better capital structure allocations are analyzed. We could play a good role in the reference and development of each city by continuously learning these superior structural configurations

相似文献/References:

[1]尹 诗,侯国莲,于晓东,等.基于 Bi-RNN的风电机组主轴承温度预警方法研究[J].郑州大学学报(工学版),2019,40(05):44.[doi:10.13705/j.issn.1671-6833.2019.05.008]
 Yin Shi,Hou Guolian,Yu Xiaodong,et al.Research on early warning method of wind turbine main bearing temperature based on Bi-RNN[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):44.[doi:10.13705/j.issn.1671-6833.2019.05.008]
[2]易茂祥,宋晨钰,于金星,等.基于随机森林的集成电路适应性测试方研究[J].郑州大学学报(工学版),2021,42(04):13.[doi:10.13705/j.issn.1671-6833.2021.02.016]
 Yi Maoxiang,Song Chenyu,Yu Jinxing,et al.An Adaptive Test Method of IC Based on Random Forest[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):13.[doi:10.13705/j.issn.1671-6833.2021.02.016]
[3]李爱民,王海隆,许有成.优化随机森林算法的城市湖泊DOC浓度遥感反演[J].郑州大学学报(工学版),2022,43(06):90.[doi:10.13705/j.issn.1671-6833.2022.06.007]
 LI Aimin,WANG Hailong,XU Youcheng.Remote Sensing Retrieval of Urban Lake DOC Concentration Based on Optimized Random Forest Algorithm[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):90.[doi:10.13705/j.issn.1671-6833.2022.06.007]

更新日期/Last Update: 2019-07-29