[1]李伟庆、朱世杰、孙玉峰、关绍康.医用Mg-Zn-Y-Nd合金微细管材的制备及组织性能研究[J].郑州大学学报(工学版),2021,42(02):94-98.[doi:10.13705/j.issn.1671-6833.2021.02.005]
 Li Weiqing,Zhu Shijie,Sun Yufeng,et al.Preparation, Microstructure and Properties of Medical Mg-Zn-Y-Nd Alloy Micro-tubes[J].Journal of Zhengzhou University (Engineering Science),2021,42(02):94-98.[doi:10.13705/j.issn.1671-6833.2021.02.005]
点击复制

医用Mg-Zn-Y-Nd合金微细管材的制备及组织性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年02期
页码:
94-98
栏目:
出版日期:
2021-04-12

文章信息/Info

Title:
Preparation, Microstructure and Properties of Medical Mg-Zn-Y-Nd Alloy Micro-tubes
作者:
李伟庆、朱世杰、孙玉峰、关绍康
郑州大学材料科学与工程学院;
Author(s):
Li Weiqing; Zhu Shijie; Sun Yufeng; Guan Shaokang;
School of Materials Science and Engineering, Zhengzhou University;
关键词:
Keywords:
Mg-Zn-Y-Nd alloy micro-tube hot extrusion microstructure surface roughness
DOI:
10.13705/j.issn.1671-6833.2021.02.005
文献标志码:
A
摘要:
在本研究中,通过二次热挤压、冷拉拔以及退火的方法成功制备出外径Φ2.46 mm,壁厚0.14 mm的Mg-Zn-Y-Nd合金微细管材。微细管材的外径误差、内径误差以及壁厚误差分别为0.51 %、0.32 %、3.35 %。冷拉拔微细管材的屈服强度为342.2±10 MPa,抗拉强度为350.4±10 MPa,延伸率为0.4±0.2 %。经退火处理后,由于微细管材发生静态再结晶,造成晶粒细化、织构弱化以及第二相颗粒的弥散分布,其综合力学性能得到显著改善。退火态微细管材的屈服强度、抗拉强度以及延伸率分别为245.6±10 MPa 、305.6±10 MPa 、18.2±1.0 %。而且,退火态微细管材的断口表现出典型的韧性断裂特征。
Abstract:
In this study, Mg-Zn-Y-Nd alloy micro-tubes with an outer diameter of Φ2.46 mm and a wall thickness of 0.14 mm were successfully prepared by secondary hot extrusion, cold drawing and annealing. The outer diameter error, inner diameter error and wall thickness error of the micro-tubes were 0.51 %, 0.32 % and 3. 35 %, respectively. The yield strength, tensile strength and elongation of the drawn micro-tubes were 342.2±10 MPa, 350.4±10 MPa and 0.4±0.2 %. After annealing, the micro-tubes undergo static recrystallization, which resulted in grain refinement, texture weaken and dispersion of the second phase particles. The mechanical properties of the annealed micro-tubes were significantly improved. The yield strength, tensile strength and elongation of the annealed micro-tubes were 245.6±10 MPa, 305.6±10 MPa and 18.2±1.0 %, respectively. Moreover, the fractures of the annealed micro-tubes exhibited typical ductile fracture characteristics.

参考文献/References:

[1] 王喆,赵世凤,田沄,等.基于自适应聚类中心的脑血管分割方法[J].郑州大学学报(工学版),2019,40(1):18-23,31.

[2] Van BEUSEKOM H M M,SERRUYS P W.Drug-eluting stent endothelium:presence or dysfunction[J].JACC cardiovascular interventions,2010,3(1):76-77.
[3] HERMAWAN H,DUBÉ D,MANTOVANI D.Developments in metallic biodegradable stents[J].Acta biomaterialia,2010,6(5):1693-1697.
[4] MANI G,FELDMAN M D,PATEL D,et al.Coronary stents:a materials perspective[J].Biomaterials,2007,28(9):1689-1710.
[5] HOFFMANN R,MINTZ G S.Coronary in-stent restenosis:predictors,treatment and prevention[J].European heart journal,2000,21(21):1739-1749.
[6] JONER M,FINN A V,FARB A,et al.Pathology of drug-eluting stents in humans:delayed healing and late thrombotic risk[J].JACC,2006,48(1):193-202.
[7] Di MARIO C,GRIFFITHS H,GOKTEKIN O,et al.Drug-eluting bioabsorbable magnesium stent[J].Journal of interventional cardiology,2004,17(6):391-395.
[8] HANADA K,MATSUZAKI K,HUANG X S,et al.Fabrication of Mg alloy tubes for biodegradable stent application[J].Materials science and engineering:C,2013,33(8):4746-4750.
[9] 方刚,闫凯民,曾攀,等.镁合金微细管热挤压-冷拉拔工艺[J].塑性工程学报,2013,20(5):11-15.
[10] LU W L,YUE R,MIAO H W,et al.Enhanced plasticity of magnesium alloy micro-tubes for vascular stents by double extrusion with large plastic deformation[J].Materials letters,2019,245:155-157.
[11] WANG J,WANG L G,GUAN S K,et al.Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application[J].Journal of materials science:materials in medicine,2010,21(7):2001-2008.
[12] WANG B,GUAN S K,WANG J,et al.Effects of Nd on microstructures and properties of extruded Mg-2Zn-0.46Y-xNd alloys for stent application[J].Materials science and engineering:B,2011,176(20):1673-1678.
[13] 杨中原.血管支架用Mg-Zn-Y-Nd合金微细管材的制备工艺及性能表征[D]. 郑州: 郑州大学, 2017.
[14] 曲家惠,岳明凯,刘烨.镁合金塑性变形机制的研究进展[J]. 兵器材料科学与工程, 2009, 32(2):116-119.
[15] CHOI S H,SHIN E J,SEONG B S.Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression[J].Acta materialia,2007,55(12):4181-4192.
[16] HUO Q H,YANG X Y,MA J J,et al.Texture weakening of AZ31 magnesium alloy sheet obtained by a combination of bidirectional cyclic bending at low temperature and static recrystallization[J].Journal of materials science,2013,48(2):913-919.
[17] KOIKE J,KOBAYASHI T,MUKAI T,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta materialia,2003,51(7):2055-2065.
[18] MOKDAD F,CHEN D L.Cyclic deformation and anelastic behavior of ZEK100 magnesium alloy:effect of strain ratio[J].Materials science and engineering:A,2015,640:243-258.

更新日期/Last Update: 2021-05-30