[1]汪慎文,王佳莹,张佳星,等.SI7:应用精英档案和反向学习的多目标差分进化算法[J].郑州大学学报(工学版),2020,41(06):40-45.[doi:10.13705/j.issn.1671-6833.2020.06.011]
 WANG Shenwen,WANG Jiaying,ZHANG Jiaxing,et al.A Multi-objective Differential Evolution Algorithm with Elite-archive and Opposition-based Learning[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):40-45.[doi:10.13705/j.issn.1671-6833.2020.06.011]
点击复制

SI7:应用精英档案和反向学习的多目标差分进化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年06期
页码:
40-45
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
A Multi-objective Differential Evolution Algorithm with Elite-archive and Opposition-based Learning
作者:
汪慎文王佳莹张佳星王峰王晖
河北地质大学信息工程学院,河北石家庄050031, 河北地质大学人工智能与机器学习研究室,河北石家庄050031, 武汉大学计算机学院,湖北武汉430072, 南昌工程学院信息工程学院,江西南昌330099

Author(s):
WANG Shenwen12 WANG Jiaying12 ZHANG Jiaxing12 WANG Feng3 WANG Hui4
1.School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China; 2.Laboratory of Artificial Intelligence and Machine Learning, Hebei GEO University, Shijiazhuang 050031, China; 3.School of Computer Science, Wuhan University, Wuhan 430072, China; 4.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099,China
关键词:
Keywords:
multi-objective optimization elite-archive opposition-based learning differential evolution algorithm constrained decomposition with grids
DOI:
10.13705/j.issn.1671-6833.2020.06.011
文献标志码:
A
摘要:
针对多目标优化问题日渐复杂,受集成算法思想的启发,提出一种应用精英档案和反向学习的多目标差分进化算法。该算法通过建立一个外部档案,来保存种群进化过程中的非支配解,采用精英保留策略维持档案规模,提高算法收敛速度。在进化过程中根据反向学习代跳跃概率,使用一般反向学习策略生成反向解,扩大搜索范围,提高种群多样性。利用网格系统确定解的坐标,并根据一定的约束生成交叉池,在交叉池中选择父代个体,利用差分进化算法产生新个体,通过网格约束分解排序算法选择下一代种群。将此算法与其他几个代表性算法在UF测试函数上进行实验,结果表明,所提出的算法多样性及收敛性表现更优。
Abstract:
The multi-objective optimization problem became more and more complex. Inspired by the ensemble algorithm, a multi-objective differential evolution algorithm with elite-archive and opposition-based learning is proposed in this paper. In this algorithm, an external archive was created to save the nondominated solutions in the evolutionary process of the population. It used the preset opposition-based generation jumping andopposition-based learning to generate the different solutions of the individual and stored in the elite archive, to expand the search scope and improve population diversity. The grid was used to determines the coordinates of the solutions, and the restricted mating pool was generated according to certain constraints. The parent solutions were selected in the restricted mating pool to produce the new individual by using differential evolution algorithm, then generated the next iteration population by constrained decomposition with grids sorting. The experimental results showed that the proposed algorithm had strong robustness with the shapes of PFs in solving unconstrained multi-objective optimization problems was superior to some state-of-the-art multi-objective algorithms in diversity and convergence on UF test problems.

参考文献/References:

[1] Van NIEKERK S G J,BREYTENBACH W J J,MARAIS J H.Developing an optimisation model for industrial furnace gaseous fuel distribution for energy cost savings[C]//2017 International Conference on the Industrial and Commercial Use of Energy (ICUE).New York:IEEE,2017:1-4.

[2] MONTOYA-TORRES J R,Lwidth=11,height=14,dpi=110PEZ FRANCO J,NIETO ISAZA S,et al.A literature review on the vehicle routing problem with multiple depots[J].Computers & industrial engineering,2015,79:115-129.
[3] TIAN Y,CHENG R,ZHANG X Y,et al.A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization[J].IEEE transactions on evolutionary computation,2019,23(2):331-345.
[4] JIANG S Y,YANG S X.A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization[J].IEEE transactions on evolutionary computation,2017,21(3):329-346.
[5] ZHANG Q F,LI H.MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J].IEEE transactions on evolutionary computation,2007,11(6):712-731.
[6] CHENG R,JIN Y C,OLHOFER M,et al.A reference vector guided evolutionary algorithm for many-objective optimization[J].IEEE transactions on evolutionary computation,2016,20(5):773-791.
[7] CAI X Y,MEI Z W,FAN Z,et al.A constrained decomposition approach with grids for evolutionary multiobjective optimization[J].IEEE transactions on evolutionary computation,2018,22(4):564-577.
[8] ZHANG X Y,ZHENG X T,CHENG R,et al.A competitive mechanism based multi-objective particle swarm optimizer with fast convergence[J].Information sciences,2018,427:63-76.
[9] ZHANG H, ZHOU A M, SONG S M,et al. A self- organizing multiobjective evolutionary algorithm[J]. IEEE transactions on evolutionary computation, 2016, 20(5): 792- 806.
[10] 谢承旺,王志杰,夏学文.应用档案精英学习和反向学习的多目标进化算法[J]. 计算机学报, 2017, 40(3): 757-772.
[11] 谢承旺,邹秀芬,夏学文,等.一种多策略融合的多目标粒子群优化算法[J].电子学报, 2015,43(8): 1538-1544.
[12] LI M, YANG S, LIU X. Pareto or non-Pareto: bi-criterion evolution in multiobjective optimization[J].IEEE transactions on evolutionary computation, 2016, 20(5): 645-665.
[13] YUAN Y, XU H, WANG B,et al. Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE transactions on evolutionary computation, 2016, 20(2): 180-198.
[14] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341-359.
[15] CAO X J, LI G L, YE Q B,et al. Multi-objective optimization of permanent magnet synchronous motor based on elite retention hybrid simulated annealing algorithm[C]//2017 12th IEEE Conference on Industrial Electronics and Applications. New York: IEEE, 2017: 535-540.
[16] TIAN Y, CHENG R, ZHANG X Y,et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization[J]. IEEE computational intelligence magazine, 2017, 12(4): 73-87.

相似文献/References:

[1]邹露,颜雪松,胡成玉.突发饮用水污染下的水阀和消防栓的调度研究[J].郑州大学学报(工学版),2018,39(03):93.[doi:10.13705/j.issn.1671-6833.2018.03.006]
 Zou Luyan,Xuesong,Hu Chengyu.Research on Dispatching Algorithm of Valves and Hydrants under Sudden Drinking Water Pollution[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):93.[doi:10.13705/j.issn.1671-6833.2018.03.006]
[2]邓立宝,吴怡然,郭苏.基于分解多目标进化的椭圆定日镜场布局[J].郑州大学学报(工学版),2020,41(05):37.[doi:10.13705/j.issn.1671-6833.2020.03.012]
 DENG Libao,WU Yiran,GUO Su.Elliptical Heliostat Field Layout Optimization Based on MOEA/D[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):37.[doi:10.13705/j.issn.1671-6833.2020.03.012]

更新日期/Last Update: 2021-02-10