[1]周坤雨,岳宁宁,邱柯妮.自供能系统中可配置DC-DC转换器的设计[J].郑州大学学报(工学版),2021,42(04):70-76.[doi:10.13705/j.issn.1671-6833.2021.04.023]
 Zhou Kunyu,Yue Ningning,Qiu Keni,et al.A Reconfigurable DC-DC Converter Design for Energy-harvesting System[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):70-76.[doi:10.13705/j.issn.1671-6833.2021.04.023]
点击复制

自供能系统中可配置DC-DC转换器的设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年04期
页码:
70-76
栏目:
出版日期:
2021-07-30

文章信息/Info

Title:
A Reconfigurable DC-DC Converter Design for Energy-harvesting System
作者:
周坤雨岳宁宁邱柯妮
首都师范大学信息工程学院;
Author(s):
Zhou Kunyu; Yue Ningning; Qiu Keni;
School of Information Engineering, Capital Normal University;
关键词:
Keywords:
DOI:
10.13705/j.issn.1671-6833.2021.04.023
文献标志码:
A
摘要:
从环境中获取能量的自供能系统相比传统电池供电的系统具有绿色经济、无需更换/维护电池充电等优势,是物联网领域发展的一个热点方向。自供能系统中常常采用“收集-存储-使用”的能量采集架构为系统供能。该采集架构中储能电容和负载之间需要DC-DC转换器来传递能量,DC-DC转换器的转换效率直接影响着整个系统的性能和能效,因此如何平衡储能电容放电电压和负载之间的关系以实现较高的能量转换效率是一个关键问题。本文提出一种自供能存算一体系统中的动态可配置DC-DC转换器设计,对基于RRAM交叉阵列的加速器负载进行实验,分析了储能电容放电电压和负载与DC-DC转换效率的量化关系,该可配置DC-DC转换器最高转换效率可达87.93%,平均转换效率可达78.49%。本文提出的可配置DC-DC转换器可为自适应负载调度优化研究提供理论依据。
Abstract:
Compared with a traditional battery-powered system,an energy harvesting system that could harvest energy from environment has the advantages of green economy,with no necessity of replacing or recharging betteries,etc.It had become a hot research topic in the field of Internet of Things.Targeting the "harvest-store-use" architecture of energy-harvesting system,a DC-DC converter,between the storage capacitor and the load,was essential to energy conversion efficiency,and further impact the performance and energy efficiency of the entire system.So it was a key issue to balance the relationship of the discharge voltage of the storage capacitor and the load in order to achieve high energy conversion efficiency.To address this issue,this paper proposed a reconfigurable DC-DC converter design for energy-harvesting computing-in-memory (CIM)system.Firstly,the conversion efficiency was fitted utilizing curve fitting.Then,according to the fitted data,the voltage interval of the best conversion efficiency for each DC-DC converter was calculated to guide the selection of the switch capacitor to the boost ratio.Finally,based on experiments on the accelerator load,which was on top of RRAM crossbar,the relationship between the discharge voltage of capacitor as well as the RRAM load and the DC-DC conversion efficiency were quantitatively analyzed.The experimental results showed that the maximum conversion efficiency and average conversion efficiency of the proposed reconfigurable DC-DC converter could reach 87.93% and 78.49% respectively,providing a wider range of input voltage,a higher conversion efficiency,and a theoretical basis for future optimizations on adaptive load schedule.

参考文献/References:

[1] LEE I,SOKOLSKY O.Medical cyber physical systems[C]//Proceedings of the 47th Design Automation Conference on-DAC′10.New York:ACM Press,2010:743-748.

[2] JIANG X,POLASTRE J,CULLER D.Perpetual environmentally powered sensor networks[C]//Fourth International Symposium on Information Processing in Sensor Networks,2005.Piscataway:IEEE,2005:463-468.
[3] SUDEVALAYAM S,KULKARNI P.Energy harvesting sensor nodes:survey and implications[C]//IEEE Communications Surveys &Tutorials.Piscataway:IEEE,:443-461.
[4] KANSAL A,HSU J,ZAHEDI S,et al.Power management in energy harvesting sensor networks[J].ACM transactions on embedded computing systems,2007,6(4):32.
[5] 前瞻产业研究院.2018年中国物联网行业发展现状与2019年前景预测[EB/OL].(2019-01-07)[2020-10-01].http://www.kaixian.tv/gd/2019/0107/37349_2.html.
[6] LI X Q,HEO U D,MA K S,et al.Rf-powered systems using steep-slope devices[C]//2014 IEEE 12th International New Circuits and Systems Conference.Piscataway:IEEE,2014:73-76.
[7] 黄文锋,徐珊珊,孙燚,等.基于多分辨率卷积神经网络的火焰检测[J].郑州大学学报(工学版),2019,40(5):80-84.
[8] 刘帅奇,王洁,安彦玲,等.基于CNN的非下采样剪切波域多聚焦图像融合[J].郑州大学学报(工学版),2019,40(4):36-41.
[9] XIA L X,TANG T Q,HUANGFU W Q,et al.Switched by input:power efficient structure for RRAM-based convolutional neural network[C]//2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC).Piscataway:IEEE,2016:1-6.
[10] SHAFIEE A,NAG A,MURALIMANOHAR N,et al.ISAAC:a convolutional neural network accelerator with in situ analog arithmetic in crossbars[C]//2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).Piscataway:IEEE,2016:14-26.
[11] QIU K N,JAO N,ZHAO M Y,et al.ResiRCA:a resilient energy harvesting ReRAM crossbar-based accelerator for intelligent embedded processors[C]//2020 IEEE International Symposium on High Performance Computer Architecture (HPCA).Piscataway:IEEE,2020:315-327.
[12] MA K S,LI X Q,LIU Y P,et al.Dynamic machine learning based matching of nonvolatile processor microarchitecture to harvested energy profile[C]//2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).Piscataway:IEEE,2015:670-675.
[13] BISWAS A,SINANGIL Y,CHANDRAKASAN A P.A 28 nm FDSOI integrated reconfigurable switched-capacitor based step-up DC-DC converter with 88% peak efficiency[J].IEEE journal of solid-state circuits,2015,50(7):1540-1549.

相似文献/References:

[1]刘鑫璐,王文,潘勇,等.基于物联网的声表面波传感器阵列检测系统研究[J].郑州大学学报(工学版),2016,37(02):58.[doi:10.3969/j.issn.1671-6833.201512003]
 Liu Xinlu,Wang Wen,Pan Yong,et al.Design of the poison gas detection system with IOP and surface acoustic wave sensor array[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):58.[doi:10.3969/j.issn.1671-6833.201512003]

更新日期/Last Update: 2021-08-26