[1]曲思霖,王从庆,李建亮,等.基于小波变换共空间模式的脑电信号解码[J].郑州大学学报(工学版),2022,43(03):31-36.[doi:10.13705/j.issn.1671-6833.2021.06.003]
 QU Silin,WANG Congqing,LI Jianliang,et al.EEG Decoding Based on Wavelet Transform and Common Space Pattern[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):31-36.[doi:10.13705/j.issn.1671-6833.2021.06.003]
点击复制

基于小波变换共空间模式的脑电信号解码()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年03期
页码:
31-36
栏目:
出版日期:
2022-04-10

文章信息/Info

Title:
EEG Decoding Based on Wavelet Transform and Common Space Pattern
作者:
曲思霖12王从庆12李建亮12展文豪2张 民1
1.南京航空航天大学自动化学院;2.中国航天员科研训练中心人因工程国防科技重点实验室;

Author(s):
QU Silin12 WANG Congqing12 LI Jianliang12 ZHAN Wenhao2 ZHANG Min1
1.School of Automation,Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China; 
2.National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094,China
关键词:
Keywords:
BCI EEG decoding long short term memory network space manipulator CSP
分类号:
TP391. 4
DOI:
10.13705/j.issn.1671-6833.2021.06.003
文献标志码:
A
摘要:
针对运动想象脑电信号实现任务少、识别准确率低等问题,提出了一种基于小波包分解的共空间模式脑电信号特征提取方法。该方法通过长短期记忆网络进行脑电信号解码,采用独立成分分析的方法将运动想象信号进行盲源分离,采用小波包分解方法将每个通道脑电信号按频率分为8组。计算每组信号的功率值,采用递归特性消除方法去除对分类不重要的10个节点特征,将被选择的节点信号采用1对1共空间模式提取空域特征,将特征矩阵输入长短期记忆网络进行脑电信号解码,得到4类运动想象信号分类结果。采用本文方法对公开的脑机接口竞赛数据集(包括左手想象信号、右手想象信号、舌头想象信号、双脚想象信号)前3位受试者数据进行验证,结果表明:本文方法的识别准确率分别为90.28%,94.25%、96.55% ,平均识别准确率达到93.69%。与其他方法对比,本文方法识别准确率较高。用识别的脑电信号作为解码控制信号,控制虚拟太空环境中的空间机械臂顺时针或逆时针运动,达到抓取空间中目标物体的目的。
Abstract:
Aiming at the problem of fewer tasks and low accuracy of recognition for motion imagination electroencephalogram(EEG)signals, in this paper a common space pattern(CSP)method based on wavelet packet decomposition(WPD)was proposed to extract the features of EEG signals.The long short term memory network was used to decode the EEG signals.Motor imagination signals were separated from blind sources by independent component analysis(ICA), and each channel EEG signal was divided into 8 groups by frequency using wavelet packet decomposition.The power value of each group of signals was calculated, 10 features were removed for classification by recurrence feature elimination(RFE).The selected signals were extracted by one-to-one common space pattern filters.The feature matrix were input into a long shortterm memory network for EEG decoding, and the classification results of 4 categories of motion imagination signals were obtained.The proposed method was used to verify the open data set of brain computer interface(BCI)competition(including four kinds of EEG signals: left hand imagination signal, right hand imagination signal, tongue imagination signal, and foot imagination signal).The recognition accuracy of three subjects was 90.28%, 94.25% and 96.55% respectively, and the average recognition accuracy could reach 93.69%.Compared with other feature extraction and classification methods, this method had a high classification accuracy.The decoded EEG signals were used to control the clockwise or counterclockwise movement of the space manipulator to achieve the purpose of grasping the target in the virtual space environment.

参考文献/References:

[1] VAUGHAN T M. Guest editorial brain-computer interface technology: a review of the second international meeting[ J] . IEEE transactions on neural systems and rehabilitation engineering,2003,11(2) :94-109.

 [2] 张绍荣,朱志斌,冯宝,等. 基于组稀疏贝叶斯逻辑 回归运动想象脑电信号分类模型的通道选择与分 类 新 算 法 [ J ] . 仪 器 仪 表 学 报, 2019, 40 ( 10 ) : 179-191.
 [3] MAHMOOD A,ZAINAB R,AHMAD R B,et al. Classification of multi-class motor imagery EEG using four band common spatial pattern [ C] / / 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( EMBC) . Piscataway: IEEE,2017:1034-1037.
 [4] PARK H J,KIM J,MIN B,et al. Motor imagery EEG classification with optimal subset of wavelet based common spatial pattern and kernel extreme learning machine [ C ] / / 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Piscataway:IEEE,2017:2863-2866. 
[5] SUN A Q, FAN B H, JIA C C. Motor imagery EEGbased online control system for upper artificial limb [ C] / / Proceedings of 2011 International Conference on Transportation,Mechanical,and Electrical Engineering ( TMEE) . Piscataway:IEEE,2011:1646-1649. 
[6] 庞存锁,刘磊,单涛. 基于短时分数阶傅里叶变换的 时频 分 析 方 法 [ J ] . 电 子 学 报, 2014, 42 ( 2 ) : 347-352. 
[7] 王艳景,乔晓艳,李鹏,等. 基于小波包熵和支持向 量机的运动想象任务分类研究[ J] . 仪器仪表学报, 2010,31(12) :2729-2735.
 [8] RAMOSER H,MULLER-GERKING J,PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ] . IEEE transactions on rehabilitation engineering,2000,8(4) : 441-446. 
[9] 杨帮华,陆文宇,何美燕,等. 脑机接口中基于 WPD 和 CSP 的特 征 提 取 [ J] . 仪 器 仪 表 学 报, 2012, 33 (11) :2560-2565.
 [10] BAI X P,WANG X Z,ZHENG S H,et al. The offline feature extraction of four-class motor imagery EEG based on ICA and Wavelet-CSP [ C] / / Proceedings of the 33rd Chinese Control Conference. Piscataway: IEEE,2014:7189-7194.
 [11] 乔晓艳,王春晖,任兆麟. 小波统计方法提取想象运 动诱发脑电特征[ J] . 测试技术学报,2013,27( 3) : 201-207.
 [12] 张焕,乔晓艳,王飞. 基于小波-共空间模式的多类 想象运动诱发脑电特征提取 [ J] . 测 试 技 术 学 报, 2015,29(6) :523-528. 
[13] WANG H X. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: the fisher criterion [ J ] . Medical & biological engineering & computing,2011,49(9) :997-1001. 
[14] YANG B H,LI H R,WANG Q. Subject-based feature extraction by using fisher WPD-CSP in brain computer interfaces [ J ] . Computer methods and programs in biomedicine,2016,129:21-28.
 [15] 王丙琛,司怀伟,谭国真. 基于深度强化学习的自动 驾驶车 控 制 算 法 研 究 [ J ] . 郑 州 大 学 学 报 ( 工 学 版) ,2020,41(4) :41-45,80. 
[16] 曹胜海,彭尧,张建平,等. 基于 CSP 和 RR 的多类 运动 想 象 脑 电 信 号 的 识 别 分 类 研 究 [ J ] . 软 件, 2017,38(12) :223-228.
 [17] 曾焕生. 基于迁移学习的运动想象脑电分类方法研 究[D] . 广州:华南理工大学,2019.

更新日期/Last Update: 2022-05-02