[1]卢晨辉,冯硕,易爱华,等.基于深度学习的加油站销量预测与营销策略应用研究[J].郑州大学学报(工学版),2022,43(01):1-6.[doi:10.13705/j.issn.1671-6833.2022.01.014]
 LU Chenhui,FENG Shuo,YI Aihua,et al.Gasoline Station Sales Prediction Method Based on Deep Learning and Its Application of Promotion Strategy[J].Journal of Zhengzhou University (Engineering Science),2022,43(01):1-6.[doi:10.13705/j.issn.1671-6833.2022.01.014]
点击复制

基于深度学习的加油站销量预测与营销策略应用研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年01期
页码:
1-6
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Gasoline Station Sales Prediction Method Based on Deep Learning and Its Application of Promotion Strategy
作者:
卢晨辉1冯硕1易爱华2叶晓俊1
1.清华大学软件学院,北京 海淀100084 2.中石化销售股份有限公司广东石油分公,广东 广州510620

Author(s):
LU Chenhui1 FENG Shuo1 YI Aihua2 YE Xiaojun1
1.School of Software, Tsinghua University, Beijing 100084, China; 
2.Sinopec Sales Co., Ltd.,Guangdong Branch, Guangzhou 510620, China
关键词:
Keywords:
sales prediction data-driven decision deep learning recurrent neural network artificial intelligence applications
分类号:
TP181
DOI:
10.13705/j.issn.1671-6833.2022.01.014
文献标志码:
A
摘要:
营销策略的制定是加油站业务的重要部分,而数据驱动的营销策略制定已成为加油站实现精准营销的迫切需求。本文提出了一种基于加油站历史数据、营销策略和关键特征的油品销量预测的深度学习模型和基于销量预测模型的营销策略制定方法。根据加油站历史数据特征,我们设计了一个多层次的网络结构处理不同类别特征的数据,并结合营销策略信息以执行油品的销量预测。此外,通过引入关键特征,我们提升了销量预测模型的准确度;通过输入营销策略信息的变更,我们实现了加油站营销策略的自动选择。在真实加油站数据构建的数据集上进行的实验的结果显示,我们提出的销量预测模型相比其他主流方法具有更低的预测误差。
Abstract:
Promotion strategy is an important part of gas station business, and data-driven promotion strategy has become an urgent demand for gas stations to achieve precise marketing. A deep learning model was proposed for forecasting gasoline sales based on historical gas station data, promotion strategies and key features, and a promotion strategy formulation method based on sales forecasting models. Due to the historical data characteristics of gas stations, a multi-level network structure was designed to process data of different types, and combine promotion strategy information to perform oil sales forecasts. In addition, by introducing key features, the accuracy of the sales forecast model was improved; by inputting different promotion strategies, the automatic selection of gas station marketing strategies was realized. The results of experiments conducted on a data set constructed from real gas station data showed that the sales forecast model proposed had lower forecast errors than other mainstream methods

参考文献/References:

[1] CASTELLI M,DOBREVA M,HENRIQUES R,et al. Predicting days on market to optimize real estate sales strategy[J].Complexity,2020,2020: 1-22.

 [2] POSCH K,TRUDEN C,HUNGERLÄNDER P,et al.A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants[EB/OL].( 2020 - 05 - 26) [2021 - 07 - 06]. https: / /arxiv. org / abs/2005. 12647. 
[3] SAYLI A,OZTURK I,USTUNEL M. Brand loyalty analysis system using K-means algorithm[J].Journal of engineering technology and applied sciences,2016,1 ( 3) : 107-126. 
[4] SASTRY S,BABU M S P. Analysis & prediction of sales data in SAP-ERP system using clustering algorithms[EB/OL]. ( 2013 - 12 - 10) [2021 - 07 - 06].https: / /arxiv.org /abs/1312. 2678. 
[5] CHIRU C G,POSEA V V. Time series analysis for sales prediction [C]/ /International Conference on Artificial Intelligence: Methodology, Systems, and Applications.Cham: Springer,2018: 163-172. 
[6] CHERIYAN S,IBRAHIM S,MOHANAN S,et al.Intelligent sales prediction using machine learning techniques[C]/ /2018 International Conference on Computing, Electronics & Communications Engineering.Piscataway: IEEE,2018: 53-58. 
[7] XIA Z C,XUE S,WU L B,et al. ForeXGBoost: passenger car sales prediction based on XGBoost[J]. Distributed and parallel databases,2020,38 ( 3) : 713 -738. 
[8] BRANDA F,MAROZZO F,TALIA D.Ticket sales prediction and dynamic pricing strategies in public transport[J].Big data and cognitive computing,2020,4 ( 4) : 1-17. 
[9] CHEN T,YIN H Z,CHEN H X,et al.Online sales prediction via trend alignment-based multitask recurrent neural networks [J]. Knowledge and information systems,2020,62( 6) : 2139-2167. 
[10] XIN S,ESTER M,BU J J,et al.Multi-task based sales predictions for online promotions[C]/ /Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM,2019: 2823-2831.
 [11] CORTES C,VAPNIK V. Support-vector networks[J]. Machine learning,1995,20( 3) : 273-297. 
[12] FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of computer and system sciences, 1997,55( 1) : 119-139.
 [13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural computation,1997,9 ( 8) : 1735 -1780. 
[14] CHUNG J,GULCEHRE C,CHO K,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL].( 2014-12-11) [2021- 07-06]. https: / /arxiv.org /abs/1412. 3555.
 [15] XU K,BA J,KIROS R,et al. Show,attend and tell: neural image caption generation with visual attention [EB/OL]. ( 2015-02-10) [2021-07-06]. https: / / arxiv.org /abs/1502. 03044v2. 
[16] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[EB/OL]. ( 2017- 01- 12) [2021-07-06]. https: / /arxiv.org /abs/1706. 03762.

更新日期/Last Update: 2022-01-09